Multinomial belief networks for healthcare data
- URL: http://arxiv.org/abs/2311.16909v3
- Date: Sat, 6 Apr 2024 11:38:31 GMT
- Title: Multinomial belief networks for healthcare data
- Authors: H. C. Donker, D. Neijzen, J. de Jong, G. A. Lunter,
- Abstract summary: We propose a deep generative model for augmentation of sample sizes and uncertainty.
We show that we can identify meaningful clusters of DNA mutations in cancer and show that we can identify meaningful signatures in a fully data-driven way.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Healthcare data from patient or population cohorts are often characterized by sparsity, high missingness and relatively small sample sizes. In addition, being able to quantify uncertainty is often important in a medical context. To address these analytical requirements we propose a deep generative Bayesian model for multinomial count data. We develop a collapsed Gibbs sampling procedure that takes advantage of a series of augmentation relations, inspired by the Zhou$\unicode{x2013}$Cong$\unicode{x2013}$Chen model. We visualise the model's ability to identify coherent substructures in the data using a dataset of handwritten digits. We then apply it to a large experimental dataset of DNA mutations in cancer and show that we can identify biologically meaningful clusters of mutational signatures in a fully data-driven way.
Related papers
- Estimating Unknown Population Sizes Using the Hypergeometric Distribution [1.03590082373586]
We tackle the challenge of estimating discrete distributions when both the total population size and the sizes of its constituent categories are unknown.
We develop our approach to account for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable.
Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data.
arXiv Detail & Related papers (2024-02-22T01:53:56Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data.
We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model.
arXiv Detail & Related papers (2022-08-21T17:54:39Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - On the data requirements of probing [20.965328323152608]
We present a novel method to estimate the required number of data samples for probing datasets.
Our framework helps to systematically construct probing datasets to diagnose neural NLP models.
arXiv Detail & Related papers (2022-02-25T16:27:06Z) - SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data
for Cancer Type Classification [4.992154875028543]
Integration and analysis of multi-omics data give us a broad view of tumours, which can improve clinical decision making.
SubOmiEmbed produces comparable results to the baseline OmiEmbed with a much smaller network and by using just a subset of the data.
This work can be improved to integrate mutation-based genomic data as well.
arXiv Detail & Related papers (2022-02-03T16:39:09Z) - MURAL: An Unsupervised Random Forest-Based Embedding for Electronic
Health Record Data [59.26381272149325]
We present an unsupervised random forest for representing data with disparate variable types.
MURAL forests consist of a set of decision trees where node-splitting variables are chosen at random.
We show that using our approach, we can visualize and classify data more accurately than competing approaches.
arXiv Detail & Related papers (2021-11-19T22:02:21Z) - A Hamiltonian Monte Carlo Model for Imputation and Augmentation of
Healthcare Data [0.6719751155411076]
Missing values exist in nearly all clinical studies because data for a variable or question are not collected or not available.
Existing models usually do not consider privacy concerns or do not utilise the inherent correlations across multiple features to impute the missing values.
A Bayesian approach to impute missing values and creating augmented samples in high dimensional healthcare data is proposed in this work.
arXiv Detail & Related papers (2021-03-03T11:57:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.