UGG: Unified Generative Grasping
- URL: http://arxiv.org/abs/2311.16917v2
- Date: Fri, 26 Jul 2024 17:59:14 GMT
- Title: UGG: Unified Generative Grasping
- Authors: Jiaxin Lu, Hao Kang, Haoxiang Li, Bo Liu, Yiding Yang, Qixing Huang, Gang Hua,
- Abstract summary: Generation-based methods that generate grasping postures conditioned on the object can often produce diverse grasping.
We introduce a unified diffusion-based dexterous grasp generation model, dubbed the name UGG.
Our model achieves state-of-the-art dexterous grasping on the large-scale DexGraspNet dataset.
- Score: 41.201337177738075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dexterous grasping aims to produce diverse grasping postures with a high grasping success rate. Regression-based methods that directly predict grasping parameters given the object may achieve a high success rate but often lack diversity. Generation-based methods that generate grasping postures conditioned on the object can often produce diverse grasping, but they are insufficient for high grasping success due to lack of discriminative information. To mitigate, we introduce a unified diffusion-based dexterous grasp generation model, dubbed the name UGG, which operates within the object point cloud and hand parameter spaces. Our all-transformer architecture unifies the information from the object, the hand, and the contacts, introducing a novel representation of contact points for improved contact modeling. The flexibility and quality of our model enable the integration of a lightweight discriminator, benefiting from simulated discriminative data, which pushes for a high success rate while preserving high diversity. Beyond grasp generation, our model can also generate objects based on hand information, offering valuable insights into object design and studying how the generative model perceives objects. Our model achieves state-of-the-art dexterous grasping on the large-scale DexGraspNet dataset while facilitating human-centric object design, marking a significant advancement in dexterous grasping research. Our project page is https://jiaxin-lu.github.io/ugg/.
Related papers
- Contour Integration Underlies Human-Like Vision [2.6716072974490794]
Humans perform at high accuracy, even with few object contours present.
Humans exhibit an integration bias -- a preference towards recognizing objects made up of directional fragments over directionless fragments.
arXiv Detail & Related papers (2025-04-07T16:45:06Z) - Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation [22.500531114325092]
We propose Infinite Mobility, a novel method for high-fidelity articulated objects through procedural generation.
We show that our synthetic data can be used as training data for generative models, enabling next-step scaling up.
arXiv Detail & Related papers (2025-03-17T17:53:56Z) - Attribute-Based Robotic Grasping with Data-Efficient Adaptation [19.683833436076313]
We present an end-to-end encoder-decoder network to learn attribute-based robotic grasping.
Our approach achieves over 81% instance grasping success rate on unknown objects.
arXiv Detail & Related papers (2025-01-04T00:37:17Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data.
This often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns.
We propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives.
arXiv Detail & Related papers (2024-12-09T21:36:10Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
We propose Segue: Side-information guided generative unlearnable examples.
To improve transferability, we introduce side information such as true labels and pseudo labels.
It can resist JPEG compression, adversarial training, and some standard data augmentations.
arXiv Detail & Related papers (2023-10-24T06:22:37Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
We propose a new framework to evaluate one-shot generative models along two axes: sample recognizability vs. diversity.
We first show that GAN-like and VAE-like models fall on opposite ends of the diversity-recognizability space.
In contrast, disentanglement transports the model along a parabolic curve that could be used to maximize recognizability.
arXiv Detail & Related papers (2022-05-20T13:17:08Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
We present a new dataset named regrad to sustain the modeling of relationships among objects and grasps.
Our dataset is collected in both forms of 2D images and 3D point clouds.
Users are free to import their own object models for the generation of as many data as they want.
arXiv Detail & Related papers (2021-04-29T05:31:21Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
We propose a probabilistic generative model to synthesize and reconstruct long horizon motion sequences conditioned on past information and control signals.
We evaluate the models on a mixture of motion capture datasets of human locomotion with foot-step and bone-length analysis.
arXiv Detail & Related papers (2021-04-07T09:51:15Z) - Attribute-Based Robotic Grasping with One-Grasp Adaptation [9.255994599301712]
We introduce an end-to-end learning method of attribute-based robotic grasping with one-grasp adaptation capability.
Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances.
Experimental results in both simulation and the real world demonstrate that our approach achieves over 80% instance grasping success rate on unknown objects.
arXiv Detail & Related papers (2021-04-06T03:40:46Z) - Combining Semantic Guidance and Deep Reinforcement Learning For
Generating Human Level Paintings [22.889059874754242]
Generation of stroke-based non-photorealistic imagery is an important problem in the computer vision community.
Previous methods have been limited to datasets with little variation in position, scale and saliency of the foreground object.
We propose a Semantic Guidance pipeline with 1) a bi-level painting procedure for learning the distinction between foreground and background brush strokes at training time.
arXiv Detail & Related papers (2020-11-25T09:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.