Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
- URL: http://arxiv.org/abs/2503.13424v1
- Date: Mon, 17 Mar 2025 17:53:56 GMT
- Title: Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
- Authors: Xinyu Lian, Zichao Yu, Ruiming Liang, Yitong Wang, Li Ray Luo, Kaixu Chen, Yuanzhen Zhou, Qihong Tang, Xudong Xu, Zhaoyang Lyu, Bo Dai, Jiangmiao Pang,
- Abstract summary: We propose Infinite Mobility, a novel method for high-fidelity articulated objects through procedural generation.<n>We show that our synthetic data can be used as training data for generative models, enabling next-step scaling up.
- Score: 22.500531114325092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale articulated objects with high quality are desperately needed for multiple tasks related to embodied AI. Most existing methods for creating articulated objects are either data-driven or simulation based, which are limited by the scale and quality of the training data or the fidelity and heavy labour of the simulation. In this paper, we propose Infinite Mobility, a novel method for synthesizing high-fidelity articulated objects through procedural generation. User study and quantitative evaluation demonstrate that our method can produce results that excel current state-of-the-art methods and are comparable to human-annotated datasets in both physics property and mesh quality. Furthermore, we show that our synthetic data can be used as training data for generative models, enabling next-step scaling up. Code is available at https://github.com/Intern-Nexus/Infinite-Mobility
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Physics-Driven Data Generation for Contact-Rich Manipulation via Trajectory Optimization [22.234170426206987]
We present a low-cost data generation pipeline that integrates physics-based simulation, human demonstrations, and model-based planning.<n>We validate the pipeline's effectiveness by training diffusion policies for challenging contact-rich manipulation tasks.<n>The trained policies are deployed zero-shot on hardware for bimanual iiwa arms, achieving high success rates with minimal human input.
arXiv Detail & Related papers (2025-02-27T18:56:01Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.<n>We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.<n>Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data [7.603659241572307]
We propose a novel UCB-based training procedure combined with a dynamic usability metric.<n>Our proposed metric integrates low-level and high-level information from synthetic images and their corresponding real and synthetic datasets.<n>We show that our metric is an effective way to rank synthetic images based on their usability.
arXiv Detail & Related papers (2024-12-06T23:36:36Z) - MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators [4.5353840616537555]
Graph Network Simulators (GNS) have emerged as the leading method for modeling physical phenomena.
We have constructed a high-quality physical simulation dataset encompassing 1D, 2D, and 3D scenes.
A key feature of our dataset is the inclusion of precise multi-body dynamics, facilitating a more realistic simulation of the physical world.
arXiv Detail & Related papers (2024-10-04T03:03:06Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Learning to Simulate Daily Activities via Modeling Dynamic Human Needs [24.792813473159505]
We propose a knowledge-driven simulation framework based on generative adversarial imitation learning.
Our core idea is to model the evolution of human needs as the underlying mechanism that drives activity generation in the simulation model.
Our framework outperforms the state-of-the-art baselines in terms of data fidelity and utility.
arXiv Detail & Related papers (2023-02-09T12:30:55Z) - Towards Precise Model-free Robotic Grasping with Sim-to-Real Transfer
Learning [11.470950882435927]
We present an end-to-end robotic grasping network with a grasp.
In physical robotic experiments, our grasping framework grasped single known objects and novel complex-shaped household objects with a success rate of 90.91%.
The proposed grasping framework outperformed two state-of-the-art methods in both known and unknown object robotic grasping.
arXiv Detail & Related papers (2023-01-28T16:57:19Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.