論文の概要: FedECA: A Federated External Control Arm Method for Causal Inference
with Time-To-Event Data in Distributed Settings
- arxiv url: http://arxiv.org/abs/2311.16984v1
- Date: Tue, 28 Nov 2023 17:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 09:28:00.112645
- Title: FedECA: A Federated External Control Arm Method for Causal Inference
with Time-To-Event Data in Distributed Settings
- Title(参考訳): FedECA:分散環境での時系列データを用いた因果推論のためのフェデレーション外部制御アーム手法
- Authors: Jean Ogier du Terrail, Quentin Klopfenstein, Honghao Li, Imke Mayer,
Nicolas Loiseau, Mohammad Hallal, F\'elix Balazard, Mathieu Andreux
- Abstract要約: 外部制御アーム(ECA)は、実験薬の早期臨床開発を知らせ、非ランダム化環境での規制承認の有効な証拠を提供することができる。
ECAを実装する主な課題は、現実世界のデータや歴史的な臨床試験にアクセスすることである。
私たちは、FL(Federated Learning)と呼ばれるプライバシー強化技術を活用して、データ共有の障壁を取り除きます。
- 参考スコア(独自算出の注目度): 4.286217974010081
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: External control arms (ECA) can inform the early clinical development of
experimental drugs and provide efficacy evidence for regulatory approval in
non-randomized settings. However, the main challenge of implementing ECA lies
in accessing real-world data or historical clinical trials. Indeed, data
sharing is often not feasible due to privacy considerations related to data
leaving the original collection centers, along with pharmaceutical companies'
competitive motives. In this paper, we leverage a privacy-enhancing technology
called federated learning (FL) to remove some of the barriers to data sharing.
We introduce a federated learning inverse probability of treatment weighted
(IPTW) method for time-to-event outcomes called FedECA which eases the
implementation of ECA by limiting patients' data exposure. We show with
extensive experiments that FedECA outperforms its closest competitor,
matching-adjusted indirect comparison (MAIC), in terms of statistical power and
ability to balance the treatment and control groups. To encourage the use of
such methods, we publicly release our code which relies on Substra, an
open-source FL software with proven experience in privacy-sensitive contexts.
- Abstract(参考訳): 外部制御アーム(ECA)は、実験薬の初期臨床開発を知らせ、非ランダム化環境での規制承認の有効な証拠を提供する。
しかし、ECAを実装する主な課題は、現実世界のデータや歴史的な臨床試験にアクセスすることである。
実際、データ共有は、元々の収集センターを離れるデータに関するプライバシー上の考慮と、製薬会社の競争動機によって実現できないことが多い。
本稿では,フェデレーション学習(FL)と呼ばれるプライバシ向上技術を活用し,データ共有の障壁を取り除く。
我々は,患者のデータ露出を制限することにより,ECAの実装を容易化するFedECAと呼ばれる,治療重み付け(IPTW)方式のフェデレーション学習逆確率を導入する。
我々は,FedECAが最も近い競合相手であるMAIC(Match-adjusted indirect comparison)よりも,統計的パワーと治療と対照群のバランスの点で優れていることを示す。
このようなメソッドの使用を促進するため、プライバシーに敏感なコンテキストで実証された経験を持つオープンソースのFLソフトウェアであるSubstraに依存したコードを公開しています。
関連論文リスト
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
任意の因果モデルと異種データに対応する新しいFCD法を提案する。
これらのアプローチには、データのプライバシを保護するために、生データのプロキシとして要約統計を構築することが含まれる。
提案手法の有効性を示すために, 合成および実データを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-02-20T18:53:53Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
本稿では,分散データからトレーニングできるHIPAA準拠のフレームワークを提案する。
次に,アルツハイマー病(AD)検出のための多モード垂直フェデレーションモデルを提案する。
ここで提案されたVFLアーキテクチャは、多様な医療データソースをまたいだ協調学習を可能にする、新しい分散アーキテクチャを提供する。
論文 参考訳(メタデータ) (2023-12-15T22:09:04Z) - A Federated Learning Benchmark for Drug-Target Interaction [17.244787426504626]
本研究は,薬物-標的相互作用(DTI)領域におけるフェデレートラーニングの適用について提案する。
最高の非プライバシ保護代替手段と比較して、最大15%パフォーマンスが向上する。
他の領域とは異なり、DTIデータセットの非IIDデータ分布はFL性能を損なわないことを示す。
論文 参考訳(メタデータ) (2023-02-15T14:21:31Z) - Federated Causal Discovery From Interventions [35.53403074610876]
介入サンプルを含む分散データから因果構造を推定するフレームワークであるFedCDIを提案する。
フェデレートされた学習フレームワークに従って、FedCDIは、生サンプルではなく信条更新を交換することで、プライバシを改善する。
論文 参考訳(メタデータ) (2022-11-07T20:25:48Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
我々は、教師なし脳画像合成におけるフェデレートドメイン翻訳のための新しいベンチマーク(FedMed-GAN)を提案する。
FedMed-GANは発電機の性能を犠牲にすることなくモード崩壊を緩和する。
FedMed-GANと他の集中型手法を比較するための総合的な評価を提供する。
論文 参考訳(メタデータ) (2022-01-22T02:50:29Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
臨床試験は医薬品開発に不可欠であるが、高価で不正確で不十分な患者募集に苦しむことが多い。
DeepEnrollは、入力基準(タブラリデータ)を一致する推論のための共有潜在空間に共同でエンコードする、クロスモーダル推論学習モデルである。
論文 参考訳(メタデータ) (2020-01-22T17:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。