論文の概要: A Causal Inference Framework for Leveraging External Controls in Hybrid
Trials
- arxiv url: http://arxiv.org/abs/2305.08969v1
- Date: Mon, 15 May 2023 19:15:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 17:21:44.088536
- Title: A Causal Inference Framework for Leveraging External Controls in Hybrid
Trials
- Title(参考訳): ハイブリッドトライアルにおける外部制御活用のための因果推論フレームワーク
- Authors: Michael Valancius, Herb Pang, Jiawen Zhu, Stephen R Cole, Michele
Jonsson Funk, Michael R Kosorok
- Abstract要約: ランダム化トライアルのデータを外部ソースの制御データで拡張した環境での因果推論に関わる課題を考察する。
提案手法は, 推定器, 評価効率境界, および効率的な2次ロバスト推定のためのアプローチである。
筋萎縮性筋萎縮症の運動機能に対するrisdisplamの効果について検討した。
- 参考スコア(独自算出の注目度): 1.7942265700058988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the challenges associated with causal inference in settings where
data from a randomized trial is augmented with control data from an external
source to improve efficiency in estimating the average treatment effect (ATE).
Through the development of a formal causal inference framework, we outline
sufficient causal assumptions about the exchangeability between the internal
and external controls to identify the ATE and establish the connection to a
novel graphical criteria. We propose estimators, review efficiency bounds,
develop an approach for efficient doubly-robust estimation even when unknown
nuisance models are estimated with flexible machine learning methods, and
demonstrate finite-sample performance through a simulation study. To illustrate
the ideas and methods, we apply the framework to a trial investigating the
effect of risdisplam on motor function in patients with spinal muscular atrophy
for which there exists an external set of control patients from a previous
trial.
- Abstract(参考訳): 平均治療効果 (ate) を推定する効率を向上させるために, ランダム化試行からのデータを外部ソースからの制御データで拡張する場面において, 因果推論に関連する課題を検討する。
公式な因果推論フレームワークの開発を通じて、内部制御と外部制御の交換可能性に関する十分な因果仮定を概説し、ATEを識別し、新しいグラフィカルな基準との関係を確立する。
本研究では,フレキシブルな機械学習手法を用いて未知のニュアサンスモデルが推定された場合でも,推定器,評価効率境界,効率的な2倍ロバスト推定手法を考案し,シミュレーションによる有限サンプル性能を実証する。
そこで本研究では,前回の治験から外部コントロール患者が存在する脊髄筋萎縮症患者の運動機能に対するrisdisplamの効果について検討した。
関連論文リスト
- Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
個々の治療効果は、個々のレベルで最もきめ細かい治療効果を提供する。
本稿では,これらの複雑な課題に対処する共形拡散モデルに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-02T21:35:08Z) - Causal Inference under Data Restrictions [0.0]
この論文は、不確実性とデータ制限の下での現代の因果推論に焦点を当てている。
これには、ネオアジュバント臨床試験、分散データネットワーク、堅牢な個別化意思決定へのアプリケーションが含まれる。
論文 参考訳(メタデータ) (2023-01-20T20:14:32Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
本研究は、最適介入を特定するための因果的アクティブラーニング戦略を開発し、分布のインターベンショナル平均と所望の目標平均との相違によって測定した。
本研究では、Perturb-CITE-seq実験から得られた合成データと単細胞転写データの両方にアプローチを適用し、特定の細胞状態遷移を誘導する最適な摂動を同定する。
論文 参考訳(メタデータ) (2022-09-10T20:40:30Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - A Two-Stage Feature Selection Approach for Robust Evaluation of
Treatment Effects in High-Dimensional Observational Data [1.4710887888397084]
我々は,OAENet(Outcome Adaptive Elastic Net)と呼ばれる新しい2段階特徴選択手法を提案する。
OAENetは、マッチング技術を用いて堅牢な因果推論決定を行うように設計されている。
シミュレーションデータに関する数値実験により、OAENetは最先端の手法を大きく上回っていることが示された。
論文 参考訳(メタデータ) (2021-11-27T02:54:30Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
我々は,連続的評価介入の効果を推定する問題に対処するため,GAN(Generative Adversarial Network)フレームワークを構築した。
我々のモデルであるSCIGANは柔軟であり、いくつかの異なる継続的な介入に対する対実的な結果の同時推定が可能である。
継続的な介入に移行することによって生じる課題に対処するために、差別者のための新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T18:46:21Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。