Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space
- URL: http://arxiv.org/abs/2504.16851v1
- Date: Wed, 23 Apr 2025 16:19:42 GMT
- Title: Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space
- Authors: Ruben Gonzalez Avilés, Linus Scheibenreif, Nassim Ait Ali Braham, Benedikt Blumenstiel, Thomas Brunschwiler, Ranjini Guruprasad, Damian Borth, Conrad Albrecht, Paolo Fraccaro, Devyani Lambhate, Johannes Jakubik,
- Abstract summary: This study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs.<n>The model is pre-trained via a band-wise masked auto-encoder and subsequently fine-tuned on aligned multispectral-hyperspectral image pairs.<n>The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy.
- Score: 6.559887989252469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imaging provides detailed spectral information and holds significant potential for monitoring of greenhouse gases (GHGs). However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging offers broader spatial and temporal coverage but often lacks the spectral detail that can enhance GHG detection. To address these challenges, this study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs. The model is pre-trained via a band-wise masked autoencoder and subsequently fine-tuned on spatio-temporally aligned multispectral-hyperspectral image pairs. The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy relative to using multispectral data alone. This approach effectively bridges the trade-off between spectral resolution and coverage, highlighting its potential to advance atmospheric monitoring by combining the strengths of hyperspectral and multispectral systems with self-supervised deep learning.
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Multispectral to Hyperspectral using Pretrained Foundational model [1.3516162688685323]
Hyperspectral imaging provides detailed spectral information, offering significant potential for monitoring greenhouse gases like CH4 and NO2.<n>Its application is constrained by limited coverage and infrequent revisit times.<n>In contrast, multispectral imaging delivers spatial and temporal coverage but lacks the spectral granularity required for precise detection.
arXiv Detail & Related papers (2025-02-26T06:18:40Z) - Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network with Spatial-Spectral Manifold Learning [15.86617273658407]
We propose an unsupervised blind fusion method for hyperspectral and multispectral images based on Tucker decomposition and spatial spectral manifold learning (DTDNML)
We show that this method enhances the accuracy and efficiency of hyperspectral and multispectral fusion on different remote sensing datasets.
arXiv Detail & Related papers (2024-09-15T08:58:26Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model that unifies HSI interpretation across tasks and scenes.<n>In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution [47.12985199570964]
We propose a novel cross-scope spatial-spectral Transformer (CST) to investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution.
Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics.
Experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2023-11-29T03:38:56Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion [7.249349307341409]
This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
arXiv Detail & Related papers (2023-06-25T11:17:12Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.