Using Ornstein-Uhlenbeck Process to understand Denoising Diffusion
Probabilistic Model and its Noise Schedules
- URL: http://arxiv.org/abs/2311.17673v1
- Date: Wed, 29 Nov 2023 14:36:33 GMT
- Title: Using Ornstein-Uhlenbeck Process to understand Denoising Diffusion
Probabilistic Model and its Noise Schedules
- Authors: Javier E. Santos, Yen Ting Lin
- Abstract summary: We show that Denoising Diffusion Probabilistic Model DDPM can be represented by a time-homogeneous continuous-time Markov process.
Surprisingly, this continuous-time Markov process is the well-known and well-studied Ornstein-Ohlenbeck (OU) process.
- Score: 3.4235611902516263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this short note is to show that Denoising Diffusion Probabilistic
Model DDPM, a non-homogeneous discrete-time Markov process, can be represented
by a time-homogeneous continuous-time Markov process observed at non-uniformly
sampled discrete times. Surprisingly, this continuous-time Markov process is
the well-known and well-studied Ornstein-Ohlenbeck (OU) process, which was
developed in 1930's for studying Brownian particles in Harmonic potentials. We
establish the formal equivalence between DDPM and the OU process using its
analytical solution. We further demonstrate that the design problem of the
noise scheduler for non-homogeneous DDPM is equivalent to designing observation
times for the OU process. We present several heuristic designs for observation
times based on principled quantities such as auto-variance and Fisher
Information and connect them to ad hoc noise schedules for DDPM. Interestingly,
we show that the Fisher-Information-motivated schedule corresponds exactly the
cosine schedule, which was developed without any theoretical foundation but is
the current state-of-the-art noise schedule.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models [4.186575888568896]
We study time-continuous Markov jump processes on discrete state spaces.
We show that the time-reversal of the Ehrenfest process converges to the time-reversed Ornstein-Uhlenbeck process.
arXiv Detail & Related papers (2024-05-06T15:12:51Z) - Randomised benchmarking for characterizing and forecasting correlated
processes [8.788375252357945]
We develop a method to learn the details of temporally correlated noise.
In particular, we can learn the time-independent evolution operator of system plus bath.
We exemplify this by implementing our method on a superconducting quantum processor.
arXiv Detail & Related papers (2023-12-11T01:55:44Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - A Continuous Time Framework for Discrete Denoising Models [43.135447812798155]
We provide the first complete continuous time framework for denoising diffusion models of discrete data.
This is achieved by formulating the forward noising process and corresponding reverse time generative process as Continuous Time Markov Chains (CTMCs)
arXiv Detail & Related papers (2022-05-30T10:37:41Z) - Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic
Approximation under Markovian Noise [2.0305676256390934]
We study the so-called two-time-scale approximation, a simulation-based approach for finding the roots of two coupled nonlinear operators.
In particular, we consider the scenario where the data in the method are generated by Markov processes, therefore, they are dependent.
Under some fairly standard assumptions on the operators and the Markov processes, we provide a formula that characterizes the convergence rate of the mean square errors generated by the method to zero.
arXiv Detail & Related papers (2021-04-04T15:19:19Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.