論文の概要: Addressing Membership Inference Attack in Federated Learning with Model Compression
- arxiv url: http://arxiv.org/abs/2311.17750v2
- Date: Thu, 4 Jul 2024 08:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:42:23.810691
- Title: Addressing Membership Inference Attack in Federated Learning with Model Compression
- Title(参考訳): モデル圧縮によるフェデレーション学習における会員推論攻撃の対応
- Authors: Gergely Dániel Németh, Miguel Ángel Lozano, Novi Quadrianto, Nuria Oliver,
- Abstract要約: 機械学習のプライバシ保護ソリューションとしてフェデレートラーニング(FL)が提案されている。
最近の研究によると、FLはメンバーシップ推論攻撃によってプライベートクライアントデータを漏洩させることができる。
これらの攻撃の有効性は、クライアントのデータセットのサイズとモデルの複雑さと負の相関関係があることを示します。
- 参考スコア(独自算出の注目度): 8.842172558292027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learning. However, recent works have reported that FL can leak private client data through membership inference attacks. In this paper, we show that the effectiveness of these attacks on the clients negatively correlates with the size of the client's datasets and model complexity. Based on this finding, we study the capabilities of model-agnostic Federated Learning to preserve privacy, as it enables the use of models of varying complexity in the clients. To systematically study this topic, we first propose a taxonomy of model-agnostic FL methods according to the strategies adopted by the clients to select the sub-models from the server's model. This taxonomy provides a framework for existing model-agnostic FL approaches and leads to the proposal of new FL methods to fill the gaps in the taxonomy. Next, we analyze the privacy-performance trade-off of all the model-agnostic FL architectures as per the proposed taxonomy when subjected to 3 different membership inference attacks on the CIFAR-10 and CIFAR-100 vision datasets. In our experiments, we find that randomness in the strategy used to select the server's sub-model to train the clients' models can control the clients' privacy while keeping competitive performance on the server's side.
- Abstract(参考訳): 機械学習のプライバシ保護ソリューションとしてフェデレートラーニング(FL)が提案されている。
しかし、最近の研究報告では、FLはメンバーシップ推論攻撃によってプライベートクライアントデータを漏洩させることができると報告されている。
本稿では、クライアントに対するこれらの攻撃の有効性は、クライアントのデータセットのサイズとモデルの複雑さに負の相関関係があることを示す。
そこで本研究では,モデルに依存しないフェデレーションラーニング(Federated Learning,Federated Learning,Federated Learning,Federated Learning)のプライバシ保護能力について検討する。
本研究は,まず,サーバモデルからサブモデルを選択するためのクライアントの戦略に従って,モデルに依存しないFLメソッドの分類法を提案する。
この分類学は、既存のモデルに依存しないFLアプローチの枠組みを提供し、分類のギャップを埋めるための新しいFL手法の提案につながる。
次に、CIFAR-10およびCIFAR-100ビジョンデータセットに対する3つの異なるメンバーシップ推論攻撃を受けると、提案した分類基準に従って、モデルに依存しないFLアーキテクチャのプライバシパフォーマンストレードオフを分析する。
実験では,クライアントのモデルを訓練するためにサーバのサブモデルを選択する戦略におけるランダム性が,サーバ側の競争性能を維持しながらクライアントのプライバシを制御できることが判明した。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Client-supervised Federated Learning: Towards One-model-for-all Personalization [28.574858341430858]
FLシステムにおける未確認/テストクライアント上のパーソナライズされたモデルと競合する性能を達成するために,単一の堅牢なグローバルモデルのみを学習する新しいフェデレーション学習フレームワークを提案する。
具体的には、新しいクライアント監督型フェデレートラーニング(FedCS)を設計し、クライアントの潜在表現に対するバイアスを解消し、グローバルモデルがクライアント固有の知識とクライアントに依存しない知識の両方を学習できるようにする。
論文 参考訳(メタデータ) (2024-03-28T15:29:19Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
フェデレートラーニング(Federated Learning)は、大規模ニューラルネットワークモデルをトレーニングする分散メカニズムで、複数のクライアントが参加する。
この機能により、フェデレーション学習はデータのプライバシー問題に対するセキュアなソリューションとみなされる。
ブロックチェーンベースの最適化クライアント選択とプライバシ保護フレームワークを提案しました。
論文 参考訳(メタデータ) (2023-07-25T01:35:51Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
パーソナライズド・フェデレーション・ラーニング(PFL)のための新しいフレームワークを提案する。
PFLは、クライアント間で共有モデルをトレーニングする分散学習スキームである。
階層的モデリングと変分推論に基づくPFLの新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T20:12:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
pFedPTと呼ばれる画像分類タスクのための新しいPFLフレームワークを提案し、クライアントのローカルデータ配信情報を暗黙的に表現するためにパーソナライズされた視覚的プロンプトを利用する。
CIFAR10とCIFAR100データセットの実験では、pFedPTは様々な設定でいくつかの最先端(SOTA)PFLアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-03-15T15:02:15Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
カスタムクライアントモデルをトレーニングするための選択されたアプローチが、グローバルモデルにどのように影響するかを示す。
KDとLwoF(LwoF)を併用して、改良されたパーソナライズドモデルを生成する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T11:12:57Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML)は、クライアントが汎用モデルとパーソナライズされたモデルを独立してトレーニングすることを可能にする。
実験により、FMLは一般的なフェデレート学習環境よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-27T09:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。