Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
- URL: http://arxiv.org/abs/2311.18113v2
- Date: Wed, 27 Mar 2024 10:46:59 GMT
- Title: Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
- Authors: Thomas Wimmer, Peter Wonka, Maks Ovsjanikov,
- Abstract summary: Keypoint detection on 3D shapes requires semantic and geometric awareness while demanding high localization accuracy.
We employ a keypoint candidate optimization module which aims to match the average observed distribution of keypoints on the shape.
The resulting approach achieves a new state of the art for few-shot keypoint detection on the KeyPointNet dataset.
- Score: 64.39691149255717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the immense growth of dataset sizes and computing resources in recent years, so-called foundation models have become popular in NLP and vision tasks. In this work, we propose to explore foundation models for the task of keypoint detection on 3D shapes. A unique characteristic of keypoint detection is that it requires semantic and geometric awareness while demanding high localization accuracy. To address this problem, we propose, first, to back-project features from large pre-trained 2D vision models onto 3D shapes and employ them for this task. We show that we obtain robust 3D features that contain rich semantic information and analyze multiple candidate features stemming from different 2D foundation models. Second, we employ a keypoint candidate optimization module which aims to match the average observed distribution of keypoints on the shape and is guided by the back-projected features. The resulting approach achieves a new state of the art for few-shot keypoint detection on the KeyPointNet dataset, almost doubling the performance of the previous best methods.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - SNAKE: Shape-aware Neural 3D Keypoint Field [62.91169625183118]
Detecting 3D keypoints from point clouds is important for shape reconstruction.
This work investigates the dual question: can shape reconstruction benefit 3D keypoint detection?
We propose a novel unsupervised paradigm named SNAKE, which is short for shape-aware neural 3D keypoint field.
arXiv Detail & Related papers (2022-06-03T17:58:43Z) - CVFNet: Real-time 3D Object Detection by Learning Cross View Features [11.402076835949824]
We present a real-time view-based single stage 3D object detector, namely CVFNet.
We first propose a novel Point-Range feature fusion module that deeply integrates point and range view features in multiple stages.
Then, a special Slice Pillar is designed to well maintain the 3D geometry when transforming the obtained deep point-view features into bird's eye view.
arXiv Detail & Related papers (2022-03-13T06:23:18Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.