A Survey on Deep Learning for Polyp Segmentation: Techniques, Challenges
and Future Trends
- URL: http://arxiv.org/abs/2311.18373v2
- Date: Mon, 5 Feb 2024 08:34:36 GMT
- Title: A Survey on Deep Learning for Polyp Segmentation: Techniques, Challenges
and Future Trends
- Authors: Jiaxin Mei, Tao Zhou, Kaiwen Huang, Yizhe Zhang, Yi Zhou, Ye Wu,
Huazhu Fu
- Abstract summary: Early detection and assessment of polyps play a crucial role in the prevention and treatment of colorectal cancer (CRC)
In the past, people often relied on manually extracted lower-level features such as color, texture, and shape.
With the advent of deep learning, more and more outstanding medical image segmentation algorithms have emerged.
- Score: 41.267545810720044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection and assessment of polyps play a crucial role in the
prevention and treatment of colorectal cancer (CRC). Polyp segmentation
provides an effective solution to assist clinicians in accurately locating and
segmenting polyp regions. In the past, people often relied on manually
extracted lower-level features such as color, texture, and shape, which often
had issues capturing global context and lacked robustness to complex scenarios.
With the advent of deep learning, more and more outstanding medical image
segmentation algorithms based on deep learning networks have emerged, making
significant progress in this field. This paper provides a comprehensive review
of polyp segmentation algorithms. We first review some traditional algorithms
based on manually extracted features and deep segmentation algorithms, then
detail benchmark datasets related to the topic. Specifically, we carry out a
comprehensive evaluation of recent deep learning models and results based on
polyp sizes, considering the pain points of research topics and differences in
network structures. Finally, we discuss the challenges of polyp segmentation
and future trends in this field. The models, benchmark datasets, and source
code links we collected are all published at
https://github.com/taozh2017/Awesome-Polyp-Segmentation.
Related papers
- Polyp-E: Benchmarking the Robustness of Deep Segmentation Models via Polyp Editing [32.30835026874521]
In daily clinical practice, clinicians exhibit robustness in identifying polyps with both location and size variations.
It is uncertain if deep segmentation models can achieve comparable robustness in automated colonoscopic analysis.
We focus on evaluating the robustness of segmentation models on the polyps with various attributes and healthy samples.
arXiv Detail & Related papers (2024-10-22T06:30:37Z) - Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation [11.646574658785362]
This work presents a new novel architecture namely Adaptation of Distinct Semantics for Uncertain Areas in Polyp (ADSNet)
ADSNet modifies misclassified details and recovers weak features having the ability to vanish and not be detected at the final stage.
experimental results demonstrate the great correction and recovery ability leading to better segmentation performance compared to the other state of the art in the polyp image segmentation task.
arXiv Detail & Related papers (2024-05-13T07:41:28Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - TGANet: Text-guided attention for improved polyp segmentation [2.3293678240472517]
Colonoscopy is a gold standard procedure but is highly operator-dependent. Automated polyp segmentation, a precancerous precursor, can minimize missed rates and timely treatment of colon cancer at an early stage.
We exploit size-related and polyp number-related features in the form of text attention during training.
Our proposed text-guided attention network (TGANet) can generalize well to variable-sized polyps in different datasets.
arXiv Detail & Related papers (2022-05-09T13:53:26Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.