Data-efficient Deep Reinforcement Learning for Vehicle Trajectory
Control
- URL: http://arxiv.org/abs/2311.18393v1
- Date: Thu, 30 Nov 2023 09:38:59 GMT
- Title: Data-efficient Deep Reinforcement Learning for Vehicle Trajectory
Control
- Authors: Bernd Frauenknecht, Tobias Ehlgen and Sebastian Trimpe
- Abstract summary: Reinforcement learning (RL) promises to achieve control performance superior to classical approaches.
Standard RL approaches like soft-actor critic (SAC) require extensive amounts of training data to be collected.
We apply recently developed data-efficient deep RL methods to vehicle trajectory control.
- Score: 6.144517901919656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced vehicle control is a fundamental building block in the development
of autonomous driving systems. Reinforcement learning (RL) promises to achieve
control performance superior to classical approaches while keeping
computational demands low during deployment. However, standard RL approaches
like soft-actor critic (SAC) require extensive amounts of training data to be
collected and are thus impractical for real-world application. To address this
issue, we apply recently developed data-efficient deep RL methods to vehicle
trajectory control. Our investigation focuses on three methods, so far
unexplored for vehicle control: randomized ensemble double Q-learning (REDQ),
probabilistic ensembles with trajectory sampling and model predictive path
integral optimizer (PETS-MPPI), and model-based policy optimization (MBPO). We
find that in the case of trajectory control, the standard model-based RL
formulation used in approaches like PETS-MPPI and MBPO is not suitable. We,
therefore, propose a new formulation that splits dynamics prediction and
vehicle localization. Our benchmark study on the CARLA simulator reveals that
the three identified data-efficient deep RL approaches learn control strategies
on a par with or better than SAC, yet reduce the required number of environment
interactions by more than one order of magnitude.
Related papers
- Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a Quanser Aero 2 system.
PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability.
arXiv Detail & Related papers (2024-08-28T08:35:34Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
We propose a policy-search-for-model-predictive-control framework for MPC.
Specifically, we formulate the MPC as a parameterized controller, where the hard-to-optimize decision variables are represented as high-level policies.
Experiments show that our controller achieves robust and real-time control performance in both simulation and the real world.
arXiv Detail & Related papers (2021-12-07T17:39:24Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.