論文の概要: Perturbation-based Effect Measures for Compositional Data
- arxiv url: http://arxiv.org/abs/2311.18501v4
- Date: Wed, 12 Feb 2025 19:17:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:08.643792
- Title: Perturbation-based Effect Measures for Compositional Data
- Title(参考訳): 摂動に基づく構成データへの影響対策
- Authors: Anton Rask Lundborg, Niklas Pfister,
- Abstract要約: 本稿では,合成上の解釈可能な統計関数を定義する仮説データ摂動に基づくフレームワークを提案する。
摂動依存再パラメータ化を導出することにより, 摂動効果の平均を効率的に推定できることを示す。
シミュレーションおよび半合成データに基づいて提案した推定器を実証的に分析し,ニューヨークの学校やマイクロバイオームのデータに対する既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.9543275888781224
- License:
- Abstract: Existing effect measures for compositional features are inadequate for many modern applications, for example, in microbiome research, since they display traits such as high-dimensionality and sparsity that can be poorly modelled with traditional parametric approaches. Further, assessing -- in an unbiased way -- how summary statistics of a composition (e.g., racial diversity) affect a response variable is not straightforward. We propose a framework based on hypothetical data perturbations which defines interpretable statistical functionals on the compositions themselves, which we call average perturbation effects. These effects naturally account for confounding that biases frequently used marginal dependence analyses. We show how average perturbation effects can be estimated efficiently by deriving a perturbation-dependent reparametrization and applying semiparametric estimation techniques. We analyze the proposed estimators empirically on simulated and semi-synthetic data and demonstrate advantages over existing techniques on data from New York schools and microbiome data.
- Abstract(参考訳): 構成的特徴に対する既存の効果測定は、例えばマイクロバイオーム研究において、従来のパラメトリックなアプローチではモデル化が不十分な高次元性や空間性などの特性を示すため、多くの近代的な応用には不十分である。
さらに、組成(例えば人種の多様性)の要約統計が応答変数にどのように影響するかを、偏見のない方法で評価することは簡単ではない。
本稿では, 平均摂動効果(平均摂動効果)と呼ばれる, 合成自体の解釈可能な統計関数を定義する仮説データ摂動に基づくフレームワークを提案する。
これらの効果は、バイアスが境界依存分析を頻繁に使用するという欠点を自然に説明できる。
摂動依存再パラメータ化を導出し, 半パラメトリック推定手法を適用することにより, 平均摂動効果を効率的に推定できることを示す。
シミュレーションおよび半合成データに基づいて提案した推定器を実証的に分析し,ニューヨークの学校やマイクロバイオームのデータに対する既存の手法よりも優れていることを示す。
関連論文リスト
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Debiased high-dimensional regression calibration for errors-in-variables log-contrast models [0.999726509256195]
腸内マイクロバイオームとメダゲノミクスデータを分析する上での課題により,高次元回帰モデルにおける測定誤差の問題に対処することを目的としている。
本稿では,誤測定や汚染データの影響を受け,高次元構成データに対する統計的推測を行うための先駆的な取り組みを示す。
論文 参考訳(メタデータ) (2024-09-11T18:47:28Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
異種治療効果推定(ヘテロジニアス・エフェクト・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント)は、経験科学において重要な問題である。
機械学習を用いた不均一な処理効果推定のための最先端データ駆動手法について調査する。
論文 参考訳(メタデータ) (2023-01-16T21:36:49Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
不均一な治療効果を推定することは、多くの領域において重要な問題である。
現在、現存するほとんどの作品は観測データにのみ依存している。
本稿では、大量の観測データと少量のランダム化データを組み合わせることで、不均一な処理効果を推定する。
論文 参考訳(メタデータ) (2022-02-25T18:59:54Z) - Instrumental Variable Estimation for Compositional Treatments [4.656302602746229]
構成データは、生態学における種数、単細胞シークエンシングデータ由来の細胞型組成物、および微生物研究におけるアンプリコン量データを含む。
ここでは、構成が原因となる機器変数設定において、構成データに対する因果的視点を提供する。
論文 参考訳(メタデータ) (2021-06-21T16:29:41Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
より柔軟で、おそらく機械学習に基づく推定技術を可能にする理論を提供する。
提案した推定器の複数のロバスト性特性を示す。
本研究は, 介入媒介効果の推定において, 最新の統計的学習手法を活用する手段を提供する。
論文 参考訳(メタデータ) (2020-01-16T19:05:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。