論文の概要: Learning Triangular Distribution in Visual World
- arxiv url: http://arxiv.org/abs/2311.18605v3
- Date: Mon, 18 Mar 2024 09:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 02:52:49.327132
- Title: Learning Triangular Distribution in Visual World
- Title(参考訳): 視覚世界における三角形分布の学習
- Authors: Ping Chen, Xingpeng Zhang, Chengtao Zhou, Dichao Fan, Peng Tu, Le Zhang, Yanlin Qian,
- Abstract要約: 畳み込みニューラルネットワークは、ラベル分布学習を含む広汎な視覚タスクで成功している。
本研究では,特徴量とそのラベル間の数学的関連性について検討し,ラベル分布学習のための汎用的でシンプルな枠組みを提案する。
特徴とラベルの間に射影関数を構築するためのいわゆる三角分布変換(TDT)を提案し、対称的特徴差がラベルの違いを線形に反映することを保証する。
- 参考スコア(独自算出の注目度): 5.796362696313493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolution neural network is successful in pervasive vision tasks, including label distribution learning, which usually takes the form of learning an injection from the non-linear visual features to the well-defined labels. However, how the discrepancy between features is mapped to the label discrepancy is ambient, and its correctness is not guaranteed.To address these problems, we study the mathematical connection between feature and its label, presenting a general and simple framework for label distribution learning. We propose a so-called Triangular Distribution Transform (TDT) to build an injective function between feature and label, guaranteeing that any symmetric feature discrepancy linearly reflects the difference between labels. The proposed TDT can be used as a plug-in in mainstream backbone networks to address different label distribution learning tasks. Experiments on Facial Age Recognition, Illumination Chromaticity Estimation, and Aesthetics assessment show that TDT achieves on-par or better results than the prior arts.
- Abstract(参考訳): 畳み込みニューラルネットワークは、ラベル分布学習を含む広汎な視覚タスクで成功しており、通常は、非線形の視覚特徴から明確に定義されたラベルへの注入を学習する形式を取る。
しかし,これらの問題に対処するために,特徴とラベルの数学的関連性について検討し,ラベル分布学習のための汎用的でシンプルな枠組みを提示する。
特徴とラベルの間に射影関数を構築するためのいわゆる三角分布変換(TDT)を提案し、対称的特徴差がラベルの違いを線形に反映することを保証する。
提案したTDTは,各種ラベル分散学習タスクに対処するために,主流のバックボーンネットワークのプラグインとして使用できる。
顔の年齢認識, 照明色度推定, 審美性評価実験は, TDTが先行技術よりも同等以上の結果が得られることを示した。
関連論文リスト
- Online Multi-Label Classification under Noisy and Changing Label Distribution [9.17381554071824]
本稿では,Nuisy and Changing Label Distribution (NCLD) に基づくオンラインマルチラベル分類アルゴリズムを提案する。
NCLDへの頑健さは3つの新作の恩恵を受けるため,ラベルスコアとラベルランキングを高い精度で同時にモデル化することを目的としている。
論文 参考訳(メタデータ) (2024-10-03T11:16:43Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models [55.99654128127689]
Visual Foundation Models (VFM) は、3D表現学習を強化するために使用される。
VFMは、弱制御された画素間コントラスト蒸留のためのセマンティックラベルを生成する。
我々は,空間分布とカテゴリー周波数の不均衡に対応するために,点のサンプリング確率を適応させる。
論文 参考訳(メタデータ) (2024-05-23T07:48:19Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - Contrastive Label Enhancement [13.628665406039609]
コントラスト学習戦略により高次特徴を生成するコントラストラベル拡張(Contrastive Label Enhancement, ConLE)を提案する。
得られた高レベルな特徴を活用し、よく設計されたトレーニング戦略によりラベル分布を得る。
論文 参考訳(メタデータ) (2023-05-16T14:53:07Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Unsupervised Domain Adaptation with Implicit Pseudo Supervision for
Semantic Segmentation [7.748333539159297]
我々は、ターゲットドメインに関する新たな補完的知識を学ぶために、暗黙的に生成される擬似ラベルによってモデルを訓練する。
GTA5からCityscapes、SynTHIAからCityscapesタスクへの実験は、提案手法が大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-14T04:06:22Z) - Information Symmetry Matters: A Modal-Alternating Propagation Network
for Few-Shot Learning [118.45388912229494]
未ラベルサンプルの欠落した意味情報を補うために,モーダル代替伝搬ネットワーク (MAP-Net) を提案する。
我々は,情報伝達がより有益になるように,セマンティクスを介して視覚的関係ベクトルを誘導するリレーガイダンス(RG)戦略を設計する。
提案手法は有望な性能を達成し,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-09-03T03:43:53Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。