論文の概要: Anatomy and Physiology of Artificial Intelligence in PET Imaging
- arxiv url: http://arxiv.org/abs/2311.18614v1
- Date: Thu, 30 Nov 2023 15:12:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 16:08:21.409111
- Title: Anatomy and Physiology of Artificial Intelligence in PET Imaging
- Title(参考訳): PET画像における人工知能の解剖と生理
- Authors: Tyler J. Bradshaw and Alan B. McMillan
- Abstract要約: この記事では、PETイメージングで最も遭遇しそうな側面に特に焦点をあてて、現代のAIの中核となる原則を解説したガイドを提供する。
本稿では、畳み込みニューラルネットワーク、アルゴリズムトレーニング、セグメンテーションと画像合成によく使われるU-Netの構成要素について説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The influence of artificial intelligence (AI) within the field of nuclear
medicine has been rapidly growing. Many researchers and clinicians are seeking
to apply AI within PET, and clinicians will soon find themselves engaging with
AI-based applications all along the chain of molecular imaging, from image
reconstruction to enhanced reporting. This expanding presence of AI in PET
imaging will result in greater demand for educational resources for those
unfamiliar with AI. The objective of this article to is provide an illustrated
guide to the core principles of modern AI, with specific focus on aspects that
are most likely to be encountered in PET imaging. We describe convolutional
neural networks, algorithm training, and explain the components of the commonly
used U-Net for segmentation and image synthesis.
- Abstract(参考訳): 核医学分野における人工知能(AI)の影響は急速に増加している。
多くの研究者や臨床医がPETにAIを適用しようとしている。
PET画像におけるAIの存在が拡大することで、AIに精通していない人たちの教育資源の需要が高まる。
本論文の目的は、PETイメージングにおいて最も遭遇しそうな側面に特に焦点をあて、現代AIの中核的原理の図解的なガイドを提供することである。
本稿では、畳み込みニューラルネットワーク、アルゴリズムトレーニング、セグメンテーションと画像合成によく使われるU-Netの構成要素を説明する。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
我々は、AIベースのアプローチ、特にCNN(Convolutional Neural Networks)の使用が、医療画像技術による疾患検出にどのように役立つかに焦点を当てる。
CNNは、生の入力画像から特徴を抽出できるため、画像解析の一般的な手法である。
論文 参考訳(メタデータ) (2023-06-03T09:05:35Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
本報告は, MonAIコンソーシアムの業界専門家と臨床医のグループによる, 週ごとの議論と問題解決経験について述べる。
実験室におけるAIモデル開発とその後の臨床展開の障壁を明らかにする。
臨床放射線学ワークフローにおける様々なAI統合ポイントについて論じる。
論文 参考訳(メタデータ) (2022-12-29T05:17:59Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Artificial Intelligence-Based Detection, Classification and
Prediction/Prognosis in PET Imaging: Towards Radiophenomics [2.2509387878255818]
この研究は、腫瘍学的なPETとPET/CTイメージングに焦点を当てたAIベースの技術についてレビューする。
良性から悪性まで腫瘍組織学のスペクトルがあり、AIベースの分類法で同定できる。
放射線分析は、腫瘍の正確な評価のための非侵襲的手法として利用される可能性がある。
論文 参考訳(メタデータ) (2021-10-20T01:05:47Z) - Potential Applications of Artificial Intelligence and Machine Learning
in Radiochemistry and Radiochemical Engineering [0.0]
人工知能と機械学習は、PETイメージングをベンチからクリニックに邪魔する可能性がある。
この観点から、PETイメージングのための新しい放射性医薬品の設計と合成を改善するために、この技術がどのように応用できるかについての洞察を提供する。
論文 参考訳(メタデータ) (2021-08-05T18:58:56Z) - Artificial Intelligence in PET: an Industry Perspective [3.084117449495927]
人工知能(AI)は、ポジトロン・エミッション・トモグラフィ(PET)イメージングの応用など、医療画像に肯定的な影響を与える可能性があり、進歩する可能性がある。
AIは、PETにおけるAIの将来の可能性を最大化するために対処し克服する必要がある、業界固有の課題を提起する。
本稿では、AIの開発、標準化、商業化、臨床導入におけるこれらの業界固有の課題の概要を述べるとともに、近い将来にAIによってもたらされるPETイメージングの強化の可能性を探る。
論文 参考訳(メタデータ) (2021-07-14T14:47:24Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
フォトニック集積回路は超高速な人工ニューラルネットワークを可能にした。
フォトニックニューロモルフィックシステムはナノ秒以下のレイテンシを提供する。
これらのシステムは、機械学習と人工知能の需要の増加に対応する可能性がある。
論文 参考訳(メタデータ) (2020-10-30T21:41:44Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。