論文の概要: Automated interpretation of congenital heart disease from multi-view
echocardiograms
- arxiv url: http://arxiv.org/abs/2311.18788v1
- Date: Thu, 30 Nov 2023 18:37:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 15:25:48.987170
- Title: Automated interpretation of congenital heart disease from multi-view
echocardiograms
- Title(参考訳): 多視点心エコー図による先天性心疾患の自動解釈
- Authors: Jing Wang, Xiaofeng Liu, Fangyun Wang, Lin Zheng, Fengqiao Gao, Hanwen
Zhang, Xin Zhang, Wanqing Xie, Binbin Wang
- Abstract要約: 先天性心疾患(CHD)は、中国で最も多い出生障害であり、新生児死亡の原因となっている。
本研究では,多視点心エコー図を実用的エンドツーエンドのフレームワークで自動解析する手法を提案する。
- 参考スコア(独自算出の注目度): 10.238433789459624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Congenital heart disease (CHD) is the most common birth defect and the
leading cause of neonate death in China. Clinical diagnosis can be based on the
selected 2D key-frames from five views. Limited by the availability of
multi-view data, most methods have to rely on the insufficient single view
analysis. This study proposes to automatically analyze the multi-view
echocardiograms with a practical end-to-end framework. We collect the five-view
echocardiograms video records of 1308 subjects (including normal controls,
ventricular septal defect (VSD) patients and atrial septal defect (ASD)
patients) with both disease labels and standard-view key-frame labels.
Depthwise separable convolution-based multi-channel networks are adopted to
largely reduce the network parameters. We also approach the imbalanced class
problem by augmenting the positive training samples. Our 2D key-frame model can
diagnose CHD or negative samples with an accuracy of 95.4\%, and in negative,
VSD or ASD classification with an accuracy of 92.3\%. To further alleviate the
work of key-frame selection in real-world implementation, we propose an
adaptive soft attention scheme to directly explore the raw video data. Four
kinds of neural aggregation methods are systematically investigated to fuse the
information of an arbitrary number of frames in a video. Moreover, with a view
detection module, the system can work without the view records. Our video-based
model can diagnose with an accuracy of 93.9\% (binary classification), and
92.1\% (3-class classification) in a collected 2D video testing set, which does
not need key-frame selection and view annotation in testing. The detailed
ablation study and the interpretability analysis are provided.
- Abstract(参考訳): 先天性心疾患(CHD)は、中国で最も多い出生障害であり、新生児死亡の原因となっている。
臨床診断は5つの視点から選択した2dキーフレームに基づいて行うことができる。
マルチビューデータの可用性によって制限されたほとんどの手法は、不十分な単一ビュー分析に依存する必要がある。
本研究では,多視点心エコー図を実用的エンドツーエンドのフレームワークで自動解析することを提案する。
心室中隔欠損症(VSD)患者と心房中隔欠損症(ASD)患者を含む1308例の心エコー画像記録を,病名ラベルと標準キーフレームラベルの両方を用いて収集した。
ネットワークパラメータを大幅に削減するために、奥行き分離可能な畳み込み型マルチチャネルネットワークを採用する。
また, 正のトレーニングサンプルを増加させることで, 不均衡なクラス問題にアプローチする。
我々の2Dキーフレームモデルは95.4\%の精度でCHDまたは負のサンプルを診断でき、負のVSDまたはASD分類では92.3\%の精度で診断できる。
実世界実装におけるキーフレーム選択の作業をさらに緩和するため,映像データを直接探索するための適応型ソフトアテンションスキームを提案する。
4種類のニューラルアグリゲーション法を体系的に検討し、ビデオ中の任意の数のフレームの情報を融合させる。
さらに、ビュー検出モジュールにより、システムはビューレコードなしで動作することができる。
ビデオベースモデルでは, キーフレーム選択やビューアノテーションを必要としない2次元ビデオテストセットにおいて, 93.9\%(バイナリ分類), 92.1\%(3クラス分類)の精度で診断できる。
詳細なアブレーション研究と解釈可能性解析を提供する。
関連論文リスト
- Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography [6.540741143328299]
得られた画像は、しばしば3次元解剖学の2次元断面であり、重要な解剖学的詳細を欠いている可能性がある。
トレーニングセット内の弱い情報入力に不確実性を導入するデータ中心の手法であるRe-Training for Uncertainty (RT4U)を提案する。
共形予測技術と組み合わせると、RT4Uは、基底真理クラスを含むことが保証される適応的な大きさの予測セットを高精度に得ることができる。
論文 参考訳(メタデータ) (2024-09-15T10:06:06Z) - Atrial Septal Defect Detection in Children Based on Ultrasound Video
Using Multiple Instances Learning [14.62565592495898]
本稿では,心房中隔欠損診断を支援するための心エコー画像に基づく深層学習手法を提案する。
心房中隔(subAS)と低中隔4区画(LPS4C)の2つの標準ビューをASDを同定する2つのビューとして選択した。
ASD検出では,89.33 AUC,84.95精度,85.70感度,81.51特異度,81.99F1スコアが得られた。
論文 参考訳(メタデータ) (2023-06-06T16:25:29Z) - Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Learning from Subjective Ratings Using Auto-Decoded Deep Latent
Embeddings [23.777855250882244]
ラベルにおける主観性管理は医用画像解析における根本的な問題である。
自動復号型ディープ潜在埋め込み(addle)を導入する
ADDLEは自動デコーダフレームワークを使用して各レーダの傾向を明示的にモデル化する。
論文 参考訳(メタデータ) (2021-04-12T15:40:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - PS-DeVCEM: Pathology-sensitive deep learning model for video capsule
endoscopy based on weakly labeled data [0.0]
本稿では, ビデオカプセル内視鏡(VCE)データを用いて, フレームレベルの異常検出と大腸疾患の多ラベル分類を行うための, 病因性深層学習モデル(PS-DeVCEM)を提案する。
我々のモデルは注目に基づく深層マルチインスタンス学習によって駆動され、弱いラベル付きデータでエンドツーエンドに訓練されている。
トレーニング中にフレームアノテーション情報を使わずに、時間的にフレームを病状でローカライズする能力を示す。
論文 参考訳(メタデータ) (2020-11-22T15:33:37Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
発展途上国の一般的なシナリオは、複数の理由からボリュームメタデータが失われることである。
ヒトの診断過程を模倣したマルチイメージから単一診断モデルを得ることが可能である。
論文 参考訳(メタデータ) (2020-10-20T04:30:09Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in
MPR Images [0.0]
MPR画像における狭窄の重症度を同定する自動モデルを開発した。
このモデルは3つのクラスのうちの1つを予測している: 正常の'no stenosis'、検出された'non-significant' - 1-50%の狭窄、'significant' - 50%以上の狭窄。
狭窄スコア分類では, 従来の検査結果と比較して, 80%の精度で精度が向上した。
論文 参考訳(メタデータ) (2020-01-23T15:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。