論文の概要: Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors
- arxiv url: http://arxiv.org/abs/2005.07519v4
- Date: Tue, 8 Jun 2021 07:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 23:45:43.341842
- Title: Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors
- Title(参考訳): 機械学習によるネットワーク侵入検知器の逆ロバスト性評価と改善
- Authors: Dongqi Han, Zhiliang Wang, Ying Zhong, Wenqi Chen, Jiahai Yang,
Shuqiang Lu, Xingang Shi, Xia Yin
- Abstract要約: 本研究では,ML ベースの NIDS のロバスト性を評価するため,グレー/ブラックボックスのトラフィック空間攻撃に関する最初の系統的研究を行った。
私たちの仕事は、以下の点で以前のものより優れています。
また,システムロバスト性を改善するために,敵攻撃に対する防御策を提案する。
- 参考スコア(独自算出の注目度): 21.86766733460335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML), especially deep learning (DL) techniques have been
increasingly used in anomaly-based network intrusion detection systems (NIDS).
However, ML/DL has shown to be extremely vulnerable to adversarial attacks,
especially in such security-sensitive systems. Many adversarial attacks have
been proposed to evaluate the robustness of ML-based NIDSs. Unfortunately,
existing attacks mostly focused on feature-space and/or white-box attacks,
which make impractical assumptions in real-world scenarios, leaving the study
on practical gray/black-box attacks largely unexplored.
To bridge this gap, we conduct the first systematic study of the
gray/black-box traffic-space adversarial attacks to evaluate the robustness of
ML-based NIDSs. Our work outperforms previous ones in the following aspects:
(i) practical-the proposed attack can automatically mutate original traffic
with extremely limited knowledge and affordable overhead while preserving its
functionality; (ii) generic-the proposed attack is effective for evaluating the
robustness of various NIDSs using diverse ML/DL models and non-payload-based
features; (iii) explainable-we propose an explanation method for the fragile
robustness of ML-based NIDSs. Based on this, we also propose a defense scheme
against adversarial attacks to improve system robustness. We extensively
evaluate the robustness of various NIDSs using diverse feature sets and ML/DL
models. Experimental results show our attack is effective (e.g., >97% evasion
rate in half cases for Kitsune, a state-of-the-art NIDS) with affordable
execution cost and the proposed defense method can effectively mitigate such
attacks (evasion rate is reduced by >50% in most cases).
- Abstract(参考訳): 機械学習(ML)、特にディープラーニング(DL)技術は、異常に基づくネットワーク侵入検知システム(NIDS)でますます使われている。
しかし、ML/DLは、特にこのようなセキュリティに敏感なシステムにおいて、敵攻撃に対して極めて脆弱であることが示されている。
MLベースのNIDSの堅牢性を評価するために、多くの敵攻撃が提案されている。
残念なことに、既存の攻撃は主に機能空間および/またはホワイトボックス攻撃に焦点を当てており、現実のシナリオでは実用的でない前提となっている。
このギャップを埋めるため,我々は,mlベースのnidssのロバスト性を評価するために,灰色/黒色ボックスのトラヒックスペース攻撃を初めて体系的に検討した。
私たちの仕事は、以下の点で以前のものより優れています。
一 提案した攻撃は、その機能を維持しつつ、極めて限られた知識と手頃なオーバーヘッドで、自動的に元のトラフィックを変更できる。
(II)汎用攻撃は多様なML/DLモデルと非負荷型特徴を用いた各種NIDSのロバスト性を評価するのに有効である。
3) ML ベースの NIDS の脆弱なロバスト性の説明法を提案する。
また,システムロバスト性を改善するために,敵攻撃に対する防御策を提案する。
多様な特徴集合とML/DLモデルを用いて,様々なNIDSのロバスト性を評価する。
実験結果から,本攻撃は手頃な実行コストで効果的である(半数のケースでは97%の回避率,最先端のnid)ことを示し,提案手法は効果的に攻撃を軽減できる(ほとんどの場合,脱出率が50%以上減少する)。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Untargeted White-box Adversarial Attack with Heuristic Defence Methods
in Real-time Deep Learning based Network Intrusion Detection System [0.0]
Adversarial Machine Learning (AML)では、悪意のあるアクターが機械学習(ML)とディープラーニング(DL)モデルを騙して、誤った予測を生成する。
AMLは新たな研究領域であり、敵の攻撃の詳細な研究に欠かせないものとなっている。
我々は,FGSM(Fast Gradient Sign Method),JSMA(Jacobian Saliency Map Attack),PGD(Projected Gradient Descent),Cerini & Wagner(C&W)の4つの強力な攻撃手法を実装した。
論文 参考訳(メタデータ) (2023-10-05T06:32:56Z) - Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion
Analysis [2.7973964073307265]
サービス拒否(DoS)攻撃の緩和は、オンラインサービスのセキュリティと可用性にとって不可欠である。
先進的なアルゴリズムを用いて複数のMLモデルを組み合わせた,革新的な融合法を提案する。
本研究は,DoS攻撃の検出を改良し,防御機構の強化に寄与する手法の可能性を強調した。
論文 参考訳(メタデータ) (2023-10-02T02:21:48Z) - Unveiling Vulnerabilities in Interpretable Deep Learning Systems with
Query-Efficient Black-box Attacks [16.13790238416691]
解釈可能なディープラーニングシステム(IDLS)は、システムの透明性と説明性を高めるために設計されている。
本稿では,ターゲットモデルとその解釈モデルに関する事前知識を必要としない新規な微生物遺伝アルゴリズムによるIDLSに対するブラックボックス攻撃を提案する。
論文 参考訳(メタデータ) (2023-07-21T21:09:54Z) - Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning [1.6574413179773757]
敵攻撃は、MLモデルを騙して欠陥予測を生成することを目的としている。
敵攻撃はMLベースのNIDSを妥協する。
本実験は, 対人訓練を伴わない継続的再訓練は, 対人攻撃の有効性を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-08T18:32:08Z) - Revisiting DeepFool: generalization and improvement [17.714671419826715]
我々は,有効性と計算効率のバランスを崩す新たな敵攻撃群を導入する。
提案手法は,大規模モデルのロバスト性の評価にも適している。
論文 参考訳(メタデータ) (2023-03-22T11:49:35Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。