論文の概要: A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2411.13778v1
- Date: Thu, 21 Nov 2024 01:26:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:36.552412
- Title: A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles
- Title(参考訳): 自律走行車におけるLiDARに基づく機械学習知覚の対向ロバスト性に関する調査
- Authors: Junae Kim, Amardeep Kaur,
- Abstract要約: この調査は、AML(Adversarial Machine Learning)と自律システムの交差点に焦点を当てている。
我々は、脅威の風景を包括的に探求し、センサーに対するサイバー攻撃と敵の摂動を包含する。
本稿では、敵の脅威に対する自律運転システムの安全性確保における課題と今後の課題を簡潔に概説する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In autonomous driving, the combination of AI and vehicular technology offers great potential. However, this amalgamation comes with vulnerabilities to adversarial attacks. This survey focuses on the intersection of Adversarial Machine Learning (AML) and autonomous systems, with a specific focus on LiDAR-based systems. We comprehensively explore the threat landscape, encompassing cyber-attacks on sensors and adversarial perturbations. Additionally, we investigate defensive strategies employed in countering these threats. This paper endeavors to present a concise overview of the challenges and advances in securing autonomous driving systems against adversarial threats, emphasizing the need for robust defenses to ensure safety and security.
- Abstract(参考訳): 自動運転では、AIと車載技術の組み合わせは大きな可能性を秘めている。
しかし、このアマルガメーションには敵の攻撃に対する脆弱性が伴う。
この調査は、LiDARベースのシステムに特化して、AML(Adversarial Machine Learning)と自律システムの交差点に焦点を当てる。
我々は、脅威の風景を包括的に探求し、センサーに対するサイバー攻撃と敵の摂動を包含する。
さらに,これらの脅威に対処するための防衛戦略についても検討する。
本論文は、敵の脅威に対して自律走行システムの安全性を確保する上での課題と進歩を簡潔に概説し、安全と安全を確保するための堅牢な防衛の必要性を強調したものである。
関連論文リスト
- Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving [65.61999354218628]
我々は、自律運転システムにおいて、視覚言語モデル(VLM)をターゲットとしたブラックボックス敵攻撃を設計する第一歩を踏み出す。
セマンティクスの生成と注入による低レベル推論の分解を目標とするカスケーディング・アディバーショナル・ディスラプション(CAD)を提案する。
本稿では,高レベルリスクシナリオの理解と構築に代理VLMを活用することで,動的適応に対処するリスクシーンインジェクションを提案する。
論文 参考訳(メタデータ) (2025-01-23T11:10:02Z) - Security by Design Issues in Autonomous Vehicles [0.7999703756441756]
この研究は、AVのコンテキストにおいて、物理的、サイバー、コーディング、コミュニケーションの各側面にまたがる多様なセキュリティレイヤの概要を概説する。
我々は、潜在的な攻撃ベクトルに対する潜在的な解決策に関する洞察を提供し、自動運転車が進化する脅威の風景の中で安全でレジリエントであることを保証する。
論文 参考訳(メタデータ) (2025-01-07T19:24:11Z) - A Comprehensive Review of Adversarial Attacks on Machine Learning [0.5104264623877593]
本研究は、AIモデルとMLモデルに対する敵攻撃の包括的概要を提供し、様々な攻撃タイプ、テクニック、潜在的な害を探索する。
実用的な洞察を得るためには、自動運転車のような現実世界のユースケースに対する攻撃をシミュレートするために、Adversarial Robustness Toolbox(ART)ライブラリを使用します。
論文 参考訳(メタデータ) (2024-12-16T02:27:54Z) - Navigating Threats: A Survey of Physical Adversarial Attacks on LiDAR Perception Systems in Autonomous Vehicles [4.4538254463902645]
LiDARシステムは敵の攻撃に弱いため、自動運転車の安全性と堅牢性に大きな課題が生じる。
本調査では,LiDARに基づく知覚システムを対象とした身体的敵攻撃に関する研究状況について概説する。
我々は、LiDARベースのシステムに対する既存の攻撃において、重要な課題を特定し、ギャップを浮き彫りにする。
論文 参考訳(メタデータ) (2024-09-30T15:50:36Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward [0.0]
この章は、自動運転車の複雑な領域を探求し、その基本的な構成要素と運用上の特性を分析します。
この調査の主な焦点は、サイバーセキュリティの領域、特に自動運転車の文脈にある。
これらの車両を潜在的な脅威から保護することを目的とした様々なリスク管理ソリューションについて、包括的な分析を行う。
論文 参考訳(メタデータ) (2023-09-25T15:19:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
この調査は、自動運転システムを危うくする可能性のあるさまざまな攻撃の詳細な分析を提供する。
さまざまなディープラーニングモデルに対する敵意攻撃と、物理的およびサイバー的コンテキストにおける攻撃をカバーする。
深層学習に基づく自動運転の安全性を向上させるために、いくつかの有望な研究方向が提案されている。
論文 参考訳(メタデータ) (2021-04-05T06:31:47Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。