論文の概要: SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things
and Cyber-Physical Systems based on Machine Learning
- arxiv url: http://arxiv.org/abs/2101.02780v1
- Date: Thu, 7 Jan 2021 22:01:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:44:54.340289
- Title: SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things
and Cyber-Physical Systems based on Machine Learning
- Title(参考訳): SHARKS: 機械学習に基づくインターネットとサイバー物理システムにおけるRisKスキャンのためのスマートハックアプローチ
- Authors: Tanujay Saha, Najwa Aaraj, Neel Ajjarapu, Niraj K. Jha
- Abstract要約: サイバー物理システム(CPS)とIoT(Internet-of-Things)デバイスは、ますます複数の機能にわたってデプロイされている。
これらのデバイスは、本質的にソフトウェア、ハードウェア、ネットワークスタック全体にわたって安全ではない。
本稿では,未知のシステム脆弱性の検出,脆弱性の管理,インシデント対応の改善のための革新的な手法を提案する。
- 参考スコア(独自算出の注目度): 5.265938973293016
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cyber-physical systems (CPS) and Internet-of-Things (IoT) devices are
increasingly being deployed across multiple functionalities, ranging from
healthcare devices and wearables to critical infrastructures, e.g., nuclear
power plants, autonomous vehicles, smart cities, and smart homes. These devices
are inherently not secure across their comprehensive software, hardware, and
network stacks, thus presenting a large attack surface that can be exploited by
hackers. In this article, we present an innovative technique for detecting
unknown system vulnerabilities, managing these vulnerabilities, and improving
incident response when such vulnerabilities are exploited. The novelty of this
approach lies in extracting intelligence from known real-world CPS/IoT attacks,
representing them in the form of regular expressions, and employing machine
learning (ML) techniques on this ensemble of regular expressions to generate
new attack vectors and security vulnerabilities. Our results show that 10 new
attack vectors and 122 new vulnerability exploits can be successfully generated
that have the potential to exploit a CPS or an IoT ecosystem. The ML
methodology achieves an accuracy of 97.4% and enables us to predict these
attacks efficiently with an 87.2% reduction in the search space. We demonstrate
the application of our method to the hacking of the in-vehicle network of a
connected car. To defend against the known attacks and possible novel exploits,
we discuss a defense-in-depth mechanism for various classes of attacks and the
classification of data targeted by such attacks. This defense mechanism
optimizes the cost of security measures based on the sensitivity of the
protected resource, thus incentivizing its adoption in real-world CPS/IoT by
cybersecurity practitioners.
- Abstract(参考訳): サイバー物理システム(CPS)やIoT(Internet-of-Things)デバイスは、医療機器やウェアラブルから、原子力発電所、自動運転車、スマートシティ、スマートホームといった重要なインフラまで、さまざまな機能に展開されている。
これらのデバイスは、本質的にソフトウェア、ハードウェア、ネットワークスタック全体にわたって安全ではないため、ハッカーによって悪用される大きな攻撃面を示す。
本稿では,未知のシステム脆弱性を検出し,脆弱性を管理し,脆弱性を悪用した場合のインシデント応答を改善するための革新的手法を提案する。
このアプローチの斬新さは、既知の現実世界のCPS/IoT攻撃からインテリジェンスを抽出し、それらを正規表現の形式で表現し、この正規表現のアンサンブルに機械学習(ML)技術を使用して、新たな攻撃ベクトルとセキュリティ脆弱性を生成することである。
我々の結果は、CPSやIoTエコシステムを悪用する可能性がある10の新しい攻撃ベクタと122の新しい脆弱性エクスプロイトをうまく生成できることを示している。
ml手法は97.4%の精度を実現し,87.2%の検索空間削減により,これらの攻撃を効率的に予測できる。
本稿では,コネクテッドカーの車内ネットワークのハッキングに対する本手法の適用例を示す。
既知の攻撃や新たな攻撃に対する防御策として,様々な種類の攻撃に対する防御・防御機構と,そのような攻撃を対象とするデータの分類について論じる。
この防衛機構は、保護されたリソースの感度に基づいてセキュリティ対策のコストを最適化し、サイバーセキュリティ実践者による現実世界のCPS/IoTへの導入を促進する。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Adv-Bot: Realistic Adversarial Botnet Attacks against Network Intrusion
Detection Systems [0.7829352305480285]
最近、機械学習ベースのセキュリティシステムに対する攻撃の可能性について調査する研究者が増えている。
本研究では,ネットワークによる侵入検知システムに対する敵攻撃,特に回避攻撃の実現可能性について検討した。
私たちのゴールは、意図した悪意のある機能をすべて実行しながら、検出を回避できる敵ボットネットトラフィックを作ることです。
論文 参考訳(メタデータ) (2023-03-12T14:01:00Z) - Attack Techniques and Threat Identification for Vulnerabilities [1.1689657956099035]
優先順位付けと集中は、最高のリスク脆弱性に限られた時間を費やすことが重要になります。
この研究では、機械学習と自然言語処理技術、およびいくつかの公開データセットを使用します。
まず、脆弱性を一般的な弱点の標準セットにマッピングし、次に一般的な弱点を攻撃テクニックにマップします。
このアプローチは平均相反ランク(MRR)が0.95であり、最先端システムで報告されているものと同等の精度である。
論文 参考訳(メタデータ) (2022-06-22T15:27:49Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - GRAVITAS: Graphical Reticulated Attack Vectors for Internet-of-Things
Aggregate Security [5.918387680589584]
IoT(Internet-of-Things)とサイバー物理システム(CPS)は、複雑なネットワークトポロジで接続された何千ものデバイスで構成されている可能性がある。
我々は、未発見の攻撃ベクトルを識別できるIoT/CPSのための包括的リスク管理システムGRAVITASについて述べる。
論文 参考訳(メタデータ) (2021-05-31T19:35:23Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。