論文の概要: Accelerating Neural Field Training via Soft Mining
- arxiv url: http://arxiv.org/abs/2312.00075v1
- Date: Wed, 29 Nov 2023 23:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 17:12:02.060912
- Title: Accelerating Neural Field Training via Soft Mining
- Title(参考訳): ソフトマイニングによるニューラルフィールドトレーニングの高速化
- Authors: Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Hossam Isack,
Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi
- Abstract要約: 本稿では,サンプリング位置を効率よく選択することで,ニューラルネットワークの訓練を加速する手法を提案する。
そこで本研究では,重要サンプリングに基づくソフトマイニング技術により,コンバージェンスの改善と最終トレーニング品質の実現が可能であることを示す。
- 参考スコア(独自算出の注目度): 30.058100638890874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach to accelerate Neural Field training by efficiently
selecting sampling locations. While Neural Fields have recently become popular,
it is often trained by uniformly sampling the training domain, or through
handcrafted heuristics. We show that improved convergence and final training
quality can be achieved by a soft mining technique based on importance
sampling: rather than either considering or ignoring a pixel completely, we
weigh the corresponding loss by a scalar. To implement our idea we use Langevin
Monte-Carlo sampling. We show that by doing so, regions with higher error are
being selected more frequently, leading to more than 2x improvement in
convergence speed. The code and related resources for this study are publicly
available at https://ubc-vision.github.io/nf-soft-mining/.
- Abstract(参考訳): 本稿では,サンプリング位置を効率よく選択することで,ニューラルネットワークの訓練を加速する手法を提案する。
ニューラルフィールドは近年普及しているが、トレーニング領域を均一にサンプリングしたり、手作りのヒューリスティックスを通じてトレーニングされることが多い。
重大サンプリングに基づくソフトマイニング手法により, コンバージェンスの改善と最終トレーニング品質が達成できることを示し, ピクセルを完全に考慮または無視するのではなく, スカラーで対応する損失を評価した。
アイデアの実装には、Langevin Monte-Carloサンプルを使用します。
その結果, 誤差の高い領域がより頻繁に選択され, 収束速度が2倍以上に向上していることがわかった。
この研究のコードと関連リソースは、https://ubc-vision.github.io/nf-soft-mining/で公開されている。
関連論文リスト
- Efficient NeRF Optimization -- Not All Samples Remain Equally Hard [9.404889815088161]
ニューラルレイディアンスフィールド(NeRF)の効率的なトレーニングのためのオンラインハードサンプルマイニングの応用を提案する。
NeRFモデルは、多くの3D再構成およびレンダリングタスクに対して最先端の品質を生み出すが、かなりの計算資源を必要とする。
論文 参考訳(メタデータ) (2024-08-06T13:49:01Z) - RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time
Path Tracing [1.534667887016089]
モンテカルロ経路追跡は、現実的な画像合成の強力な手法であるが、低いサンプル数での高レベルのノイズに悩まされている。
本稿では,サンプリング重要度ネットワーク,遅延空間エンコーダネットワーク,デノイザネットワークをエンドツーエンドでトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-05T12:39:27Z) - Neural Priming for Sample-Efficient Adaptation [92.14357804106787]
ニューラルプライミング(Neural Priming)は、大規模な事前学習されたモデルを分散シフトや下流タスクに適応させる手法である。
ニューラルプライミングは、LAION-2Bほどの大きさの事前訓練であっても、テスト時に行うことができる。
論文 参考訳(メタデータ) (2023-06-16T21:53:16Z) - SparseProp: Efficient Sparse Backpropagation for Faster Training of
Neural Networks [20.18957052535565]
トレーニング中のニューラルネットワークの重みが不足している場合に特化して、バックプロパゲーションアルゴリズムの新たな効率的なバージョンを提供する。
我々のアルゴリズムは、任意の(非構造的な)スパーシリティと共通層タイプに適用されるため、一般的なものである。
我々は、すでに分離されたネットワークを用いたトランスファーラーニングや、スパースネットワークをスクラッチからトレーニングすることで、エンドツーエンドのランタイム実験で高速化できることを示す。
論文 参考訳(メタデータ) (2023-02-09T18:54:05Z) - FastHebb: Scaling Hebbian Training of Deep Neural Networks to ImageNet
Level [7.410940271545853]
我々は、Hebbian学習のための効率的でスケーラブルなソリューションであるFastHebbを紹介する。
FastHebbはトレーニングのスピードで、これまでのソリューションを最大50倍のパフォーマンスで上回っている。
私たちは初めて、HebbianアルゴリズムをImageNetスケールに持ち込むことができます。
論文 参考訳(メタデータ) (2022-07-07T09:04:55Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
畳み込みニューラルネットワーク(CNN)は近年,単一目標追跡タスクに成功している。
本稿では,ディープ・ビジュアル・トラッキングのためのアクティブ・ラーニング手法を提案する。
アクティブラーニングの指導のもと、トレーニングされた深層CNNモデルに基づくトラッカーは、ラベリングコストを低減しつつ、競合的なトラッキング性能を達成することができる。
論文 参考訳(メタデータ) (2021-10-17T11:47:56Z) - Communication-Efficient Sampling for Distributed Training of Graph
Convolutional Networks [3.075766050800645]
隣のノードからデータを集約する必要があるため、トレーニンググラフ畳み込みネットワーク(GCN)は高価です。
先行研究では,少数の隣人を対象に,収集結果を推定する様々な近傍サンプリング手法が提案されている。
本稿では, 局所サンプリング確率を判定し, スクイード隣りのサンプリングがトレーニングの収束度に大きく影響しないことを確かめるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-19T16:12:44Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
腕の引っ張りに様々な量の資源を割り当てることができる分割可能な資源にアクセス可能な場合,マルチアームの帯状地における探索について検討する。
特に、分散コンピューティングリソースの割り当てに重点を置いており、プル毎により多くのリソースを割り当てることで、結果をより早く得ることができます。
論文 参考訳(メタデータ) (2020-10-31T18:19:29Z) - RNN Training along Locally Optimal Trajectories via Frank-Wolfe
Algorithm [50.76576946099215]
小領域の損失面に局所的なミニマを反復的に求めることにより,RNNの新規かつ効率的なトレーニング手法を提案する。
新たなRNNトレーニング手法を開発し,追加コストを伴っても,全体のトレーニングコストがバックプロパゲーションよりも低いことを実証的に観察した。
論文 参考訳(メタデータ) (2020-10-12T01:59:18Z) - Generalized Leverage Score Sampling for Neural Networks [82.95180314408205]
レバレッジスコアサンプリング(英: Leverage score sample)は、理論計算機科学に由来する強力な技術である。
本研究では、[Avron, Kapralov, Musco, Musco, Musco, Velingker, Zandieh 17] の結果をより広範なカーネルのクラスに一般化する。
論文 参考訳(メタデータ) (2020-09-21T14:46:01Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
グラフ畳み込みネットワーク(GCN)の訓練を高速化するために, ばらつきを低減したサンプリングアルゴリズムが提案されている。
これらのサンプリングアルゴリズムは、グラフ注意ネットワーク(GAT)のような固定重みよりも学習重量を含む、より一般的なグラフニューラルネットワーク(GNN)には適用できない。
論文 参考訳(メタデータ) (2020-06-10T12:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。