Precipitation Nowcasting With Spatial And Temporal Transfer Learning
Using Swin-UNETR
- URL: http://arxiv.org/abs/2312.00258v2
- Date: Tue, 12 Dec 2023 04:56:24 GMT
- Title: Precipitation Nowcasting With Spatial And Temporal Transfer Learning
Using Swin-UNETR
- Authors: Ajitabh Kumar
- Abstract summary: Precipitation nowcasting can help relevant institutions to better prepare for such events.
Recent proposed Swin-UNETR is used for precipitation nowcasting for ten different regions of Europe.
Swin-UNETR utilizes a U-shaped network within which a swin transformer-based encoder extracts multi-scale features from multiple input channels of satellite image.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change has led to an increase in frequency of extreme weather events.
Early warning systems can prevent disasters and loss of life. Managing such
events remain a challenge for both public and private institutions.
Precipitation nowcasting can help relevant institutions to better prepare for
such events. Numerical weather prediction (NWP) has traditionally been used to
make physics based forecasting, and recently deep learning based approaches
have been used to reduce turn-around time for nowcasting. In this work,
recently proposed Swin-UNETR (Swin UNEt TRansformer) is used for precipitation
nowcasting for ten different regions of Europe. Swin-UNETR utilizes a U-shaped
network within which a swin transformer-based encoder extracts multi-scale
features from multiple input channels of satellite image, while CNN-based
decoder makes the prediction. Trained model is capable of nowcasting not only
for the regions for which data is available, but can also be used for new
regions for which data is not available.
Related papers
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Skilful Precipitation Nowcasting Using NowcastNet [0.0]
Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc.
We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images.
arXiv Detail & Related papers (2023-11-29T11:24:52Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - RAP-Net: Region Attention Predictive Network for Precipitation
Nowcasting [15.587959542301789]
We propose Recall Attention Mechanism (RAM) to improve the prediction.
The experiments show that the proposed Region Attention Predictive Network (RAP-Net) has outperformed the state-of-art method.
arXiv Detail & Related papers (2021-10-03T15:55:18Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - A review of radar-based nowcasting of precipitation and applicable
machine learning techniques [3.0581668008670673]
A 'nowcast' is a type of weather forecast which makes predictions in the very short term, typically less than two hours.
This type of weather prediction has important applications for commercial aviation; public and outdoor events; and the construction industry.
New advances are possible with new partnerships between the environmental science and machine learning communities.
arXiv Detail & Related papers (2020-05-11T10:34:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.