The Case for Scalable, Data-Driven Theory: A Paradigm for Scientific
Progress in NLP
- URL: http://arxiv.org/abs/2312.00349v1
- Date: Fri, 1 Dec 2023 04:55:29 GMT
- Title: The Case for Scalable, Data-Driven Theory: A Paradigm for Scientific
Progress in NLP
- Authors: Julian Michael
- Abstract summary: I propose a paradigm for scientific progress in NLP centered around developing scalable, data-driven theories of linguistic structure.
I outline principles for data collection and theoretical modeling which can inform future scientific progress.
- Score: 10.013604276642218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I propose a paradigm for scientific progress in NLP centered around
developing scalable, data-driven theories of linguistic structure. The idea is
to collect data in tightly scoped, carefully defined ways which allow for
exhaustive annotation of behavioral phenomena of interest, and then use machine
learning to construct explanatory theories of these phenomena which can form
building blocks for intelligible AI systems. After laying some conceptual
groundwork, I describe several investigations into data-driven theories of
shallow semantic structure using Question-Answer driven Semantic Role Labeling
(QA-SRL), a schema for annotating verbal predicate-argument relations using
highly constrained question-answer pairs. While this only scratches the surface
of the complex language behaviors of interest in AI, I outline principles for
data collection and theoretical modeling which can inform future scientific
progress. This note summarizes and draws heavily on my PhD thesis.
Related papers
- Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Data Science Principles for Interpretable and Explainable AI [0.7581664835990121]
Interpretable and interactive machine learning aims to make complex models more transparent and controllable.
This review synthesizes key principles from the growing literature in this field.
arXiv Detail & Related papers (2024-05-17T05:32:27Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Dual Box Embeddings for the Description Logic EL++ [16.70961576041243]
Similar to Knowledge Graphs (KGs), Knowledge Graphs are often incomplete, and maintaining and constructing them has proved challenging.
Similar to KGs, a promising approach is to learn embeddings in a latent vector space, while additionally ensuring they adhere to the semantics of the underlying DL.
We propose a novel ontology embedding method named Box$2$EL for the DL EL++, which represents both concepts and roles as boxes.
arXiv Detail & Related papers (2023-01-26T14:13:37Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
We propose a new large-scale dataset, ConvFinQA, to study the chain of numerical reasoning in conversational question answering.
Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations.
arXiv Detail & Related papers (2022-10-07T23:48:50Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
We propose an inductive mechanism which is based on a clear model-theoretic semantics, and can thus be tightly integrated with standard deductive reasoning.
We focus on inference, a powerful commonsense reasoning mechanism which is closely related to cognitive models of category-based induction.
arXiv Detail & Related papers (2020-06-25T14:19:41Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.