論文の概要: Algorithm-based diagnostic application for diabetic retinopathy
detection
- arxiv url: http://arxiv.org/abs/2312.00529v1
- Date: Fri, 1 Dec 2023 12:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:57:39.343386
- Title: Algorithm-based diagnostic application for diabetic retinopathy
detection
- Title(参考訳): アルゴリズムによる糖尿病網膜症診断への応用
- Authors: Agnieszka Cisek, Karolina Korycinska, Leszek Pyziak, Marzena Malicka,
Tomasz Wiecek, Grzegorz Gruzel, Kamil Szmuc, Jozef Cebulski, Mariusz Spyra
- Abstract要約: 糖尿病網膜症は世界中で増加する健康問題であり、視覚障害と視覚障害の主要な原因である。
糖尿病網膜症の診断分野における最近の研究は、眼科検査で得られた画像の分析など、高度な技術を用いている。
本稿では,眼球鏡画像の処理と解析を含む自動DR診断法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diabetic retinopathy (DR) is a growing health problem worldwide and is a
leading cause of visual impairment and blindness, especially among working
people aged 20-65. Its incidence is increasing along with the number of
diabetes cases, and it is more common in developed countries than in developing
countries. Recent research in the field of diabetic retinopathy diagnosis is
using advanced technologies, such as analysis of images obtained by
ophthalmoscopy. Automatic methods for analyzing eye images based on neural
networks, deep learning and image analysis algorithms can improve the
efficiency of diagnosis. This paper describes an automatic DR diagnosis method
that includes processing and analysis of ophthalmoscopic images of the eye. It
uses morphological algorithms to identify the optic disc and lesions
characteristic of DR, such as microaneurysms, hemorrhages and exudates.
Automated DR diagnosis has the potential to improve the efficiency of early
detection of this disease and contribute to reducing the number of cases of
diabetes-related visual impairment. The final step was to create an application
with a graphical user interface that allowed retinal images taken at
cooperating ophthalmology offices to be uploaded to the server. These images
were then analyzed using a developed algorithm to make a diagnosis.
- Abstract(参考訳): 糖尿病網膜症(dr)は世界中の健康問題であり、特に20-65歳の労働者において視覚障害と盲目の主な原因となっている。
糖尿病患者数の増加とともに増加しており、先進国では発展途上国よりも一般的である。
糖尿病網膜症の診断分野における最近の研究は、眼科検査で得られた画像の解析などの高度な技術を用いている。
ニューラルネットワーク、ディープラーニング、画像解析アルゴリズムに基づく眼画像の自動解析手法は、診断の効率を向上させることができる。
本稿では,眼球鏡画像の処理と解析を含む自動DR診断法について述べる。
形態学的アルゴリズムを用いて、微小動脈瘤、出血、排出などのDRの特徴のある光学ディスクと病変を識別する。
DR自動診断は、この疾患の早期発見の効率を向上し、糖尿病関連視覚障害の患者数を減少させる可能性がある。
最後のステップは、眼科手術室で撮影された網膜画像をサーバにアップロードするグラフィカルなユーザーインターフェイスを持つアプリケーションを作ることだった。
これらの画像は、開発したアルゴリズムを用いて分析され、診断された。
関連論文リスト
- Deep Learning-Based Detection of Referable Diabetic Retinopathy and Macular Edema Using Ultra-Widefield Fundus Imaging [0.6727410055112188]
糖尿病網膜症や糖尿病黄斑浮腫は、視力喪失につながる糖尿病の重大な合併症である。
超広視野眼底画像による早期発見は、患者の成果を高めるが、画質と分析スケールの課題を提示する。
本稿では,MICCAI 2024 UWF4DRチャレンジの枠組みの中で,自動UWF画像解析のためのディープラーニングソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-19T15:51:48Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
網膜疾患の増加は、医療システムにとって大きな課題となっている。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存している。
この論文は、網膜画像の医療レポート生成を自動化する人工知能の可能性について考察する。
論文 参考訳(メタデータ) (2024-08-14T07:47:25Z) - Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
今回提案した Longitudinal Transformer for Survival Analysis (LTSA, Longitudinal Transformer for Survival Analysis, LTSA) は, 縦断的医用画像から動的疾患の予後を予測できる。
時間的注意分析により、最新の画像は典型的には最も影響力のあるものであるが、以前の画像は追加の予後に価値があることが示唆された。
論文 参考訳(メタデータ) (2024-05-14T17:15:28Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - A comprehensive survey on computer-aided diagnostic systems in diabetic
retinopathy screening [0.0]
糖尿病性メリタス(DM)は、最終的に糖尿病網膜症(DR)を引き起こす重要な微小血管破壊を引き起こす
私たちのレビューは、CADシステムで何が達成できるかを理解したい学生から確立した研究者まで、誰でも対象としています。
論文 参考訳(メタデータ) (2022-08-03T02:11:42Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - A deep learning model for classification of diabetic retinopathy in eye
fundus images based on retinal lesion detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病が網膜に影響を及ぼす結果である。
失明の原因は、未診断で治療を受けていない場合である。
本稿では眼底画像の自動DR分類モデルを提案する。
論文 参考訳(メタデータ) (2021-10-14T22:04:59Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Diabetic Retinopathy detection by retinal image recognizing [0.0]
アプリケーションの開発は畳み込みニューラルネットワークを通じて行われ、各画像ピクセルをデジタル画像処理して分析する。
VGG-16を事前訓練したモデルとして応用するのは非常に有用であり、最終的なモデルの精度は82%であった。
論文 参考訳(メタデータ) (2020-01-14T16:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。