論文の概要: Automated Retinal Image Analysis and Medical Report Generation through Deep Learning
- arxiv url: http://arxiv.org/abs/2408.07349v1
- Date: Wed, 14 Aug 2024 07:47:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:04:00.444982
- Title: Automated Retinal Image Analysis and Medical Report Generation through Deep Learning
- Title(参考訳): 深層学習による網膜画像の自動解析と医療報告生成
- Authors: Jia-Hong Huang,
- Abstract要約: 網膜疾患の増加は、医療システムにとって大きな課題となっている。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存している。
この論文は、網膜画像の医療レポート生成を自動化する人工知能の可能性について考察する。
- 参考スコア(独自算出の注目度): 3.4447129363520337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system, as the demand for ophthalmologists surpasses the available workforce. This imbalance creates a bottleneck in diagnosis and treatment, potentially delaying critical care. Traditional methods of generating medical reports from retinal images rely on manual interpretation, which is time-consuming and prone to errors, further straining ophthalmologists' limited resources. This thesis investigates the potential of Artificial Intelligence (AI) to automate medical report generation for retinal images. AI can quickly analyze large volumes of image data, identifying subtle patterns essential for accurate diagnosis. By automating this process, AI systems can greatly enhance the efficiency of retinal disease diagnosis, reducing doctors' workloads and enabling them to focus on more complex cases. The proposed AI-based methods address key challenges in automated report generation: (1) Improved methods for medical keyword representation enhance the system's ability to capture nuances in medical terminology; (2) A multi-modal deep learning approach captures interactions between textual keywords and retinal images, resulting in more comprehensive medical reports; (3) Techniques to enhance the interpretability of the AI-based report generation system, fostering trust and acceptance in clinical practice. These methods are rigorously evaluated using various metrics and achieve state-of-the-art performance. This thesis demonstrates AI's potential to revolutionize retinal disease diagnosis by automating medical report generation, ultimately improving clinical efficiency, diagnostic accuracy, and patient care. [https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models- and-Visual-Explanation]
- Abstract(参考訳): 網膜疾患の増加は、眼科医の需要が労働力を上回っているため、医療システムにとって大きな課題となる。
この不均衡は診断と治療のボトルネックを生じさせ、致命的な治療を遅らせる可能性がある。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存しており、これは時間を要するため、眼科医の限られた資源を圧迫する。
この論文は、網膜画像の医療レポート生成を自動化する人工知能(AI)の可能性について考察する。
AIは大量の画像データを素早く分析し、正確な診断に必要な微妙なパターンを特定する。
このプロセスを自動化することで、AIシステムは網膜疾患の診断の効率を大幅に向上し、医師のワークロードを削減し、より複雑なケースに集中することができる。
提案手法は, 自動レポート生成において重要な課題に対処する: (1) 医療用語表現の改善により, 医療用語におけるニュアンスを捉える能力が向上する; (2) テキストキーワードと網膜画像の相互作用を捉えるマルチモーダルディープラーニングアプローチにより, より包括的な医療報告が得られ, (3) AIベースのレポート生成システムの解釈可能性を高める技術, 臨床実践における信頼と受容を促進する。
これらの手法は様々なメトリクスを用いて厳密に評価され、最先端の性能を達成する。
この論文は、医療報告生成を自動化し、最終的に臨床効率、診断精度、患者のケアを改善することで、AIが網膜疾患の診断に革命をもたらす可能性を実証している。
[https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models- and-Visual-Explanation]
関連論文リスト
- Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation [6.88255677115486]
人工知能(AI)の最近の進歩は、医療画像のパラダイムシフトを引き起こしている。
本稿では,脳画像のセマンティックセグメンテーションへの深層学習(AIの主分野)の統合を体系的に検討する。
敵対的ニューラルネットワークは、自動化するだけでなく、セマンティックセグメンテーションプロセスを洗練する、新しいAIアプローチである。
論文 参考訳(メタデータ) (2024-10-17T00:05:05Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
本稿では、医用画像における生成AIの変換可能性について考察し、合成ACM-2データを生成する能力を強調した。
データセットのサイズと多様性の制限に対処することにより、これらのモデルはより正確な診断と患者の結果の改善に寄与する。
論文 参考訳(メタデータ) (2024-03-26T09:55:49Z) - Algorithm-based diagnostic application for diabetic retinopathy
detection [0.0]
糖尿病網膜症は世界中で増加する健康問題であり、視覚障害と視覚障害の主要な原因である。
糖尿病網膜症の診断分野における最近の研究は、眼科検査で得られた画像の分析など、高度な技術を用いている。
本稿では,眼球鏡画像の処理と解析を含む自動DR診断法について述べる。
論文 参考訳(メタデータ) (2023-12-01T12:09:06Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Explainable Artificial Intelligence in Retinal Imaging for the detection
of Systemic Diseases [0.0]
本研究では,Deep Convolutional Neural Networks(CNN)を直接使用せずに,説明可能な段階的な段階付けプロセスを評価することを目的とする。
我々は,眼底画像の網膜血管評価を行うクリニアン・イン・ザ・ループ支援インテリジェントワークフローを提案する。
半自動的な方法論は、臨床医からのより多くのインプットと解釈を持つ医療アプリケーションにおいて、AIに対する連合的なアプローチを持つことを目的としている。
論文 参考訳(メタデータ) (2022-12-14T07:00:31Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。