UAVs and Birds: Enhancing Short-Range Navigation through Budgerigar Flight Studies
- URL: http://arxiv.org/abs/2312.00597v2
- Date: Tue, 9 Jul 2024 04:19:53 GMT
- Title: UAVs and Birds: Enhancing Short-Range Navigation through Budgerigar Flight Studies
- Authors: Md. Mahmudur Rahman, Sajid Islam, Showren Chowdhury, Sadia Jahan Zeba, Debajyoti Karmaker,
- Abstract summary: This study delves into the flight behaviors of Budgerigars (Melopsittacus undulatus) to gain insights into their flight trajectories and movements.
Using 3D reconstruction from stereo video camera recordings, we closely examine the velocity and acceleration patterns during three flight motion takeoff, flying and landing.
The research aims to bridge the gap between biological principles observed in birds and the application of these insights in developing more efficient and autonomous UAVs.
- Score: 2.3884184860468136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study delves into the flight behaviors of Budgerigars (Melopsittacus undulatus) to gain insights into their flight trajectories and movements. Using 3D reconstruction from stereo video camera recordings, we closely examine the velocity and acceleration patterns during three flight motion takeoff, flying and landing. The findings not only contribute to our understanding of bird behaviors but also hold significant implications for the advancement of algorithms in Unmanned Aerial Vehicles (UAVs). The research aims to bridge the gap between biological principles observed in birds and the application of these insights in developing more efficient and autonomous UAVs. In the context of the increasing use of drones, this study focuses on the biologically inspired principles drawn from bird behaviors, particularly during takeoff, flying and landing flight, to enhance UAV capabilities. The dataset created for this research sheds light on Budgerigars' takeoff, flying, and landing techniques, emphasizing their ability to control speed across different situations and surfaces. The study underscores the potential of incorporating these principles into UAV algorithms, addressing challenges related to short-range navigation, takeoff, flying, and landing.
Related papers
- Detection of Animal Movement from Weather Radar using Self-Supervised Learning [0.14999444543328289]
We propose a self-supervised learning method for detecting animal movement.
In our proposed method, we pre-train our model on a large dataset with noisy labels produced by a threshold approach.
Our experiments on Australian weather radar data for waterbird segmentation show that the proposed method outperforms the current state-of-the art approach by 43.53% in the dice co-efficient statistic.
arXiv Detail & Related papers (2024-08-08T12:48:54Z) - Airship Formations for Animal Motion Capture and Behavior Analysis [4.939986309170004]
We showcase a system designed to use airship formations to track, follow, and visually record wild horses from multiple angles.
In this work, we showcase a system designed to use airship formations to track, follow, and visually record wild horses from multiple angles.
arXiv Detail & Related papers (2024-04-13T12:18:19Z) - Bird Movement Prediction Using Long Short-Term Memory Networks to
Prevent Bird Strikes with Low Altitude Aircraft [0.0]
The number of collisions between aircraft and birds in the airspace has been increasing at an alarming rate over the past decade.
Bird strikes with aircraft are anticipated to increase dramatically when emerging Advanced Air Mobility aircraft start operating in the low altitude airspace.
We implement four different types of Long Short-Term Memory (LSTM) models to predict bird movement latitudes and longitudes.
arXiv Detail & Related papers (2023-12-17T20:12:39Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
This paper focuses on the continuous control of the unmanned aerial vehicle (UAV) based on a deep reinforcement learning method.
We propose a deep reinforcement learning (DRL)-based method combined with human-in-the-loop, which allows the UAV to avoid obstacles automatically during flying.
arXiv Detail & Related papers (2023-04-07T01:44:05Z) - Flying Bird Object Detection Algorithm in Surveillance Video Based on
Motion Information [0.0]
The size of the object is small (low Signal-to-Noise Ratio (SNR)) in surveillance video.
An object tracking algorithm is used to track suspicious flying bird objects and calculate their Motion Range (MR)
At the same time, the size of the MR of the suspicious flying bird object is adjusted adaptively according to its speed of movement.
A LightWeight U-Shape Net (LW-USN) based on ASt-Cubes is designed to detect flying bird objects.
arXiv Detail & Related papers (2023-01-05T05:32:22Z) - The eyes and hearts of UAV pilots: observations of physiological
responses in real-life scenarios [64.0476282000118]
In civil and military aviation, pilots can train themselves on realistic simulators to tune their reaction and reflexes.
This work aims to provide a solution to gather pilots behavior out in the field and help them increase their performance.
arXiv Detail & Related papers (2022-10-26T14:16:56Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.