論文の概要: Improving Plasticity in Online Continual Learning via Collaborative Learning
- arxiv url: http://arxiv.org/abs/2312.00600v2
- Date: Sun, 31 Mar 2024 12:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:55:32.057613
- Title: Improving Plasticity in Online Continual Learning via Collaborative Learning
- Title(参考訳): 協調学習によるオンライン連続学習における塑性向上
- Authors: Maorong Wang, Nicolas Michel, Ling Xiao, Toshihiko Yamasaki,
- Abstract要約: 我々は、新しい知識(すなわち、モデル可塑性)を取得するモデルの能力は、オンラインCLにおけるもう一つの課題であると主張している。
我々は、新しい概念を習得する際のモデル能力を改善するために、協調学習に基づく戦略である協調継続学習(CCL)を提案する。
- 参考スコア(独自算出の注目度): 22.60291297308379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online Continual Learning (CL) solves the problem of learning the ever-emerging new classification tasks from a continuous data stream. Unlike its offline counterpart, in online CL, the training data can only be seen once. Most existing online CL research regards catastrophic forgetting (i.e., model stability) as almost the only challenge. In this paper, we argue that the model's capability to acquire new knowledge (i.e., model plasticity) is another challenge in online CL. While replay-based strategies have been shown to be effective in alleviating catastrophic forgetting, there is a notable gap in research attention toward improving model plasticity. To this end, we propose Collaborative Continual Learning (CCL), a collaborative learning based strategy to improve the model's capability in acquiring new concepts. Additionally, we introduce Distillation Chain (DC), a collaborative learning scheme to boost the training of the models. We adapt CCL-DC to existing representative online CL works. Extensive experiments demonstrate that even if the learners are well-trained with state-of-the-art online CL methods, our strategy can still improve model plasticity dramatically, and thereby improve the overall performance by a large margin. The source code of our work is available at https://github.com/maorong-wang/CCL-DC.
- Abstract(参考訳): オンライン連続学習(CL)は、継続的なデータストリームから新たな分類タスクを継続的に学習する問題の解決である。
オンラインCLのオフライン版とは異なり、トレーニングデータは一度しか見ることができない。
既存のオンラインCL研究の多くは、破滅的な忘れ(すなわちモデル安定性)をほとんど唯一の課題とみなしている。
本稿では,オンラインCLにおける新たな知識(すなわち,モデル可塑性)の獲得能力について論じる。
リプレイベースの戦略は破滅的な忘れを和らげるのに有効であることが示されているが、モデル可塑性の改善に向けた研究の注目の差は顕著である。
そこで本研究では,協調学習に基づく学習戦略である協調継続学習(CCL)を提案する。
さらに,モデルのトレーニングを促進するための協調学習手法であるDistillation Chain (DC)を導入する。
我々はCCL-DCを既存の代表的オンラインCL作品に適用する。
大規模な実験により、学習者が最先端のオンラインCL手法で十分に訓練されているとしても、我々の戦略はモデル可塑性を劇的に改善し、それによって全体的な性能を大きなマージンで向上させることができることを示した。
私たちの作業のソースコードはhttps://github.com/maorong-wang/CCL-DCで公開されています。
関連論文リスト
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - Cup Curriculum: Curriculum Learning on Model Capacity [1.0878040851638]
カリキュラム学習は、専門的な学習戦略を適用することにより、与えられたタスクにおける学習者のパフォーマンスを向上させることを目的としている。
この戦略はデータセット、タスク、またはモデルに重点を置いている。
このギャップを埋めるために、カップカリキュラムを提案する。
カップカリキュラムの異なる戦略を実証的に評価し、オーバーフィッティングに対する高いレジリエンスを示しながら、早期に確実に停止することを示す。
論文 参考訳(メタデータ) (2023-11-07T12:55:31Z) - Online Prototype Learning for Online Continual Learning [36.91213307667659]
シングルパスデータストリームから連続的に学習する問題について検討する。
古いデータの小さなサブセットを保存することで、リプレイベースのメソッドは有望なパフォーマンスを示している。
本稿では,オンライン学習モデルが,ショートカット学習の新たな視点からうまく一般化できない理由を理解することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T05:46:40Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
我々はENsemble-based Offline-To-Online (ENOTO) RLという新しいフレームワークを提案する。
Q-networksの数を増やすことで、オフラインの事前トレーニングとオンラインの微調整を、パフォーマンスを低下させることなくシームレスに橋渡しします。
実験により,ENOTOは既存のオフラインRL手法のトレーニング安定性,学習効率,最終性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-06-12T05:10:10Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - On the Effectiveness of Equivariant Regularization for Robust Online
Continual Learning [17.995662644298974]
継続的な学習(CL)アプローチは、このギャップを埋めるために、以前のタスクと将来のタスクの両方への知識の伝達を容易にする。
近年の研究では、多種多様な下流タスクをうまく一般化できる多目的モデルを作成することができることが示されている。
等変正則化(CLER)による連続学習を提案する。
論文 参考訳(メタデータ) (2023-05-05T16:10:31Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
監視学習によるオフライン強化学習(RL)は、さまざまな専門レベルのポリシーによって収集されたデータセットからロボットスキルを学ぶための、シンプルで効果的な方法である。
我々は、暗黙的なモデルが返却情報を利用して、固定されたデータセットからロボットスキルを取得するために、明示的なアルゴリズムにマッチするか、あるいは性能を向上するかを示す。
論文 参考訳(メタデータ) (2022-10-21T21:59:42Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
オフラインモデルに基づく強化学習では、歴史的収集データから動的モデルを学び、学習モデルと固定データセットを用いてポリシー学習を行う。
提案手法は,本手法が期待するリターンを最小限に抑えるための,反復的なオフラインMBRLフレームワークを開発する。
提案する統一型モデル政治学習フレームワークにより、我々は、広範囲の連続制御オフライン強化学習データセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-12T04:58:51Z) - Online Continual Learning with Contrastive Vision Transformer [67.72251876181497]
本稿では,オンラインCLの安定性と塑性のトレードオフを改善するために,CVT(Contrastive Vision Transformer)フレームワークを提案する。
具体的には、従来のタスクに関する情報を暗黙的にキャプチャするオンラインCLのための新しい外部アテンション機構を設計する。
学習可能な焦点に基づいて、新しいクラスと過去のクラスの間でのコントラスト学習を再バランスさせ、事前学習した表現を統合化するための焦点コントラスト損失を設計する。
論文 参考訳(メタデータ) (2022-07-24T08:51:02Z) - Don't Stop Learning: Towards Continual Learning for the CLIP Model [21.212839450030838]
Contrastive Language-Image Pre-Training(CLIP)モデルは、最近提案された大規模プレトレインモデルである。
本研究は,CLIPモデルの連続学習問題に関する体系的研究を行う。
筆者らは,CLIPモデルの忘れ問題を軽減するために,VR-LwF (Replayed Vocabulary) を用いた学習学習という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-19T13:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。