Robustness of Quantum Chaos and Anomalous Relaxation in Open Quantum Circuits
- URL: http://arxiv.org/abs/2312.00649v2
- Date: Wed, 27 Mar 2024 15:39:23 GMT
- Title: Robustness of Quantum Chaos and Anomalous Relaxation in Open Quantum Circuits
- Authors: Takato Yoshimura, Lucas Sá,
- Abstract summary: We study the interplay between quantum chaos and dissipation in generic quantum many-body systems.
For a solvable model, in the limit of large local Hilbert space dimension, we obtain an exact expression for the DFF averaged over the random unitary gates.
We find that, for long enough times, the system always relaxes with two distinctive regimes characterized by the presence or absence of gap-closing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dissipation is a ubiquitous phenomenon in nature that affects the fate of chaotic quantum dynamics. To characterize the interplay between quantum chaos and dissipation in generic quantum many-body systems, we consider a minimal dissipative Floquet many-body circuit. In particular, we study the dissipative form factor (DFF), an extension of the spectral form factor to open quantum systems, of Floquet systems in the presence of arbitrary on-site dissipation modeled by quantum channels. For a solvable model, in the limit of large local Hilbert space dimension, we obtain an exact expression for the DFF averaged over the random unitary gates, with simple, closed-form expressions in the limit of large times. We find that, for long enough times, the system always relaxes (i.e., the DFF decays) with two distinctive regimes characterized by the presence or absence of gap-closing. While the system can sustain a robust ramp for a long (but finite) time interval in the gap-closing regime, relaxation is "assisted" by quantum chaos in the regime where the gap remains nonzero. In the latter regime, we find that, if the thermodynamic limit is taken first, the gap does not close even in the dissipationless limit, a recently uncovered phenomenon dubbed anomalous relaxation. We complement our findings with numerical results for quantum circuits with a small Hilbert space dimension.
Related papers
- Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Bistability and chaos-assisted tunneling in the dissipative quantum
systems [0.0]
We revisit the problem of quantum bi- and multi-stability by considering the dissipative Double Resonance Model.
This allows us to address a novel phenomenon of dissipation- and chaos-assisted tunneling between quantum limits cycles.
arXiv Detail & Related papers (2022-04-14T13:15:36Z) - Onset of many-body quantum chaos due to breaking integrability [0.0]
We argue that the onset of quantum chaos can be described as a Fock-space delocalization process.
The integrability-breaking perturbation introduces hopping in this Fock space, and chaos sets in when this hopping delocalizes the many-body eigenstates in this space.
In either case, the perturbation strength at the onset of chaos scales to zero in the usual thermodynamic limit.
arXiv Detail & Related papers (2021-12-29T18:58:09Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Nonlocality, entropy creation, and entanglement in quantum many-body
systems [0.0]
We propose a reinterpretation and reformulation of the single-particle Green's function in nonrelativistic quantum many-body theory.
We postulate that the multiplicity of each quantized solution is directly related to the ensemble averaged spectrum and the entropy created by measurement of the particle.
arXiv Detail & Related papers (2021-01-04T14:08:30Z) - Fluctuations of subsystem entropies at late times [0.0]
We study the fluctuations of subsystem entropies in closed quantum many-body systems after thermalization.
We find that the "Boltzmann brain" paradox is largely ameliorated in quantum many-body systems, in contrast with the classical setting.
arXiv Detail & Related papers (2020-10-22T17:54:02Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.