Rectified Lorentz Force from Thermal Current Fluctuations
- URL: http://arxiv.org/abs/2312.00666v3
- Date: Tue, 13 Feb 2024 11:06:24 GMT
- Title: Rectified Lorentz Force from Thermal Current Fluctuations
- Authors: Carsten Henkel
- Abstract summary: We compute the averaged Lorentz force density that turns out nonzero in a thin sub-surface layer, pointing towards the surface, while vanishing in the bulk.
This is an elementary example of rectified fluctuations, similar to the Casimir force or radiative heat transport.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a conducting medium held at finite temperature, free carriers are
performing Brownian motion and generate fluctuating electromagnetic fields. We
compute the averaged Lorentz force density that turns out nonzero in a thin
sub-surface layer, pointing towards the surface, while vanishing in the bulk.
This is an elementary example of rectified fluctuations, similar to the Casimir
force or radiative heat transport. Our results also provide an experimental way
to distinguish between the Drude and so-called plasma models.
Related papers
- Recoil heating of a dielectric particle illuminated by a linearly polarized plane wave within the Rayleigh regime [0.0]
We derive the fluctuating force acted upon the particle arising from the fluctuations of the electromagnetic fields.
Recoil heating imposes fundamental limitations in levitated optomechanics.
arXiv Detail & Related papers (2024-04-18T18:35:18Z) - Casimir Effect Invalidates the Drude Model for Transverse Electric
Evanescent Waves [0.0]
We consider the Casimir pressure between two metallic plates and calculate the four contributions to it determined by the propagating and evanescent waves and by the transverse magnetic and transverse electric polarizations of the electromagnetic field.
It is shown that the total transverse magnetic contribution to the Casimir pressure due to both the propagating and evanescent waves and the transverse electric contribution due to only the propagating waves, computed by means of the Drude model, correlate well with the corresponding results obtained using the plasma model.
arXiv Detail & Related papers (2023-10-21T14:39:45Z) - Tangential Casimir force in the misaligned system: Magnetic media, real
conductors, and a torque [0.0]
We consider the role of magnetic response in this effect by extending the tangential force to magnetic media.
We discuss a Casimir torque between parallel plates made of isotropic media, which offers a simple way to realize torques for uncharged surfaces.
arXiv Detail & Related papers (2023-05-22T17:45:47Z) - Experimentum crucis for electromagnetic response of metals to evanescent
waves and the Casimir puzzle [0.0]
Casimir force calculated at large separations using the Lifshitz theory differs by a factor of 2 for metals described by the Drude or plasma models.
We argue that this difference is entirely determined by the contribution of transverse electric (s) evanescent waves.
arXiv Detail & Related papers (2022-11-14T11:15:16Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Nonequilibrium Casimir effects of nonreciprocal surface waves [52.12351460454646]
We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque.
We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves.
arXiv Detail & Related papers (2021-06-19T23:10:04Z) - Quantum thermodynamics of coronal heating [77.34726150561087]
convection in the stellar photosphere generates plasma waves by an irreversible process akin to Zeldovich superradiance and sonic booms.
Energy is mostly carried by megahertz Alfven waves that scatter elastically until they reach a height at which they can dissipate via mode conversion.
arXiv Detail & Related papers (2021-03-15T22:27:31Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Self-force on moving electric and magnetic dipoles: dipole radiation,
Vavilov-\v{C}erenkov radiation, friction with a conducting surface, and the
Einstein-Hopf effect [6.767887239634509]
In vacuum there is no net force on such a particle.
Because of loss of mass by the particle due to radiation, the self-force precisely cancels this inertial effect.
If the particle is moving in a homogeneous medium faster than the speed of light in the medium, Vavilov-vCerenkov radiation results.
arXiv Detail & Related papers (2020-06-27T14:48:03Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.