論文の概要: Transforming organic chemistry research paradigms: moving from manual
efforts to the intersection of automation and artificial intelligence
- arxiv url: http://arxiv.org/abs/2312.00808v1
- Date: Sun, 26 Nov 2023 09:46:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 03:31:10.201730
- Title: Transforming organic chemistry research paradigms: moving from manual
efforts to the intersection of automation and artificial intelligence
- Title(参考訳): 有機化学研究パラダイムの転換-手作業から自動化と人工知能の交差点への移行
- Authors: Chengchun Liu, Yuntian Chen, Fanyang Mo
- Abstract要約: 有機化学は、労働集約的なアプローチから、自動化とAIが支配する新しい時代へと、大きなパラダイムシフトを遂げている。
本稿では、このパラダイムシフトによってもたらされる複数の機会と課題について考察し、その長期的影響について考察する。
これは、自動化とAIの相乗的相互作用によってますます定義される有機化学研究の将来の軌道に関する貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.9883261192383611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Organic chemistry is undergoing a major paradigm shift, moving from a
labor-intensive approach to a new era dominated by automation and artificial
intelligence (AI). This transformative shift is being driven by technological
advances, the ever-increasing demand for greater research efficiency and
accuracy, and the burgeoning growth of interdisciplinary research. AI models,
supported by computational power and algorithms, are drastically reshaping
synthetic planning and introducing groundbreaking ways to tackle complex
molecular synthesis. In addition, autonomous robotic systems are rapidly
accelerating the pace of discovery by performing tedious tasks with
unprecedented speed and precision. This article examines the multiple
opportunities and challenges presented by this paradigm shift and explores its
far-reaching implications. It provides valuable insights into the future
trajectory of organic chemistry research, which is increasingly defined by the
synergistic interaction of automation and AI.
- Abstract(参考訳): 有機化学は、労働集約的なアプローチから、自動化と人工知能(AI)が支配する新しい時代へと、大きなパラダイムシフトを遂げている。
この変化は、技術の進歩、研究効率と正確性の向上への需要の増大、学際的研究の急成長によってもたらされている。
計算能力とアルゴリズムによってサポートされているAIモデルは、合成計画を大幅に作り変え、複雑な分子合成に取り組むための画期的な方法を導入している。
さらに、自律ロボットシステムは、前例のないスピードと精度で退屈な作業を行うことで、発見のペースを急速に加速している。
この記事では、このパラダイムシフトによって提示される複数の機会と課題を調べ、その広範囲にわたる影響について検討します。
これは、自動化とAIの相乗的相互作用によってますます定義される有機化学研究の将来の軌道に関する貴重な洞察を提供する。
関連論文リスト
- An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process [15.471884798655063]
人工知能(AI)技術の急速な進歩により、オペレーティングリサーチ(OR)を含む様々な分野に革命をもたらす新たな機会が開かれた。
本稿では,AIのORプロセス(AI4OR)への統合について検討し,その有効性と効率を複数の段階にわたって向上させる。
AIとORの相乗効果は、多くの領域において、大幅な進歩と新しいソリューションを推し進める可能性がある。
論文 参考訳(メタデータ) (2024-01-06T15:55:14Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Artificial Intelligence based Autonomous Molecular Design for Medical
Therapeutic: A Perspective [9.371378627575883]
ドメイン認識機械学習(ML)モデルは、小さな分子治療設計の加速にますます採用されている。
我々は、各コンポーネントによって達成された最新のブレークスルーと、このような自律型AIとMLワークフローをどのように実現できるかを提示する。
論文 参考訳(メタデータ) (2021-02-10T00:43:46Z) - Autonomous discovery in the chemical sciences part II: Outlook [2.566673015346446]
この2部構成のレビューは、自動化が化学科学における発見のさまざまな側面にどのように貢献したかを検証している。
科学プロセスにおいて、自動化と計算の役割が何であるかを明確にすることがますます重要である。
論文 参考訳(メタデータ) (2020-03-30T19:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。