論文の概要: 3DiFACE: Diffusion-based Speech-driven 3D Facial Animation and Editing
- arxiv url: http://arxiv.org/abs/2312.00870v1
- Date: Fri, 1 Dec 2023 19:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 20:12:42.648368
- Title: 3DiFACE: Diffusion-based Speech-driven 3D Facial Animation and Editing
- Title(参考訳): 3diface:拡散に基づく音声駆動3d顔アニメーションと編集
- Authors: Balamurugan Thambiraja, Sadegh Aliakbarian, Darren Cosker, Justus
Thies
- Abstract要約: 3DiFACEは、音声による顔のアニメーションと編集をパーソナライズする新しい方法である。
提案手法は,既存の最先端技術より優れ,忠実度と多様性が向上した音声駆動型アニメーションを実現する。
- 参考スコア(独自算出の注目度): 22.30870274645442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present 3DiFACE, a novel method for personalized speech-driven 3D facial
animation and editing. While existing methods deterministically predict facial
animations from speech, they overlook the inherent one-to-many relationship
between speech and facial expressions, i.e., there are multiple reasonable
facial expression animations matching an audio input. It is especially
important in content creation to be able to modify generated motion or to
specify keyframes. To enable stochasticity as well as motion editing, we
propose a lightweight audio-conditioned diffusion model for 3D facial motion.
This diffusion model can be trained on a small 3D motion dataset, maintaining
expressive lip motion output. In addition, it can be finetuned for specific
subjects, requiring only a short video of the person. Through quantitative and
qualitative evaluations, we show that our method outperforms existing
state-of-the-art techniques and yields speech-driven animations with greater
fidelity and diversity.
- Abstract(参考訳): 3DiFACEは、音声による顔のアニメーションと編集をパーソナライズする新しい方法である。
既存の手法では、音声から顔のアニメーションを決定論的に予測するが、音声と表情の間に固有の一対一の関係を見落としている。
コンテンツ作成において、生成した動きを修正したり、キーフレームを指定することが特に重要である。
確率性とモーション編集を可能にするため,3次元顔動作のための軽量な音響条件拡散モデルを提案する。
この拡散モデルは、表現力のある唇運動出力を維持しながら、小さな3次元運動データセットで訓練することができる。
さらに、特定の被写体に対して微調整が可能で、人物の短いビデオだけを必要とする。
定量的および質的評価により,本手法は既存の最先端技術より優れ,忠実度と多様性が向上した音声駆動型アニメーションが得られることを示す。
関連論文リスト
- MMHead: Towards Fine-grained Multi-modal 3D Facial Animation [68.04052669266174]
大規模なマルチモーダル3次元顔アニメーションデータセットMMHeadを構築した。
MMHeadは、49時間の3D顔の動きシーケンス、音声、リッチな階層的なテキストアノテーションで構成されている。
MMHeadデータセットに基づいて,テキストによる3次元対話ヘッドアニメーションとテキストから3次元の顔の動き生成という,2つの新しいタスクのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T09:37:01Z) - Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial
Animation [41.489700112318864]
音声駆動型3D顔アニメーションは、音声と正確に同期し、独特の話し方にマッチする鮮やかな顔アニメーションを合成することを目的としている。
本稿では,任意の発話スタイルの符号化を可能にする,革新的な発話スタイルのアンタングル化手法を提案する。
また,顔の動きから話し方や内容の絡み合った表現を学習する「textbfMimic」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-18T01:49:42Z) - DiffusionTalker: Personalization and Acceleration for Speech-Driven 3D
Face Diffuser [12.576421368393113]
スピーチ駆動の3D顔アニメーションは、アカデミックや業界で魅力的なタスクだ。
近年のアプローチでは、音声駆動型3次元顔アニメーションの非決定論的事実を考察し、その課題に拡散モデルを適用している。
本研究では,DiffusionTalkerを提案する。DiffusionTalkerは,3次元顔アニメーションと知識蒸留を個人化して3次元アニメーション生成を高速化する,コントラスト学習を利用する拡散型手法である。
論文 参考訳(メタデータ) (2023-11-28T07:13:20Z) - AdaMesh: Personalized Facial Expressions and Head Poses for Adaptive Speech-Driven 3D Facial Animation [49.4220768835379]
AdaMeshは、適応的な音声駆動の顔アニメーションアプローチである。
約10秒間の参照ビデオから、パーソナライズされた話し方を学ぶ。
鮮やかな表情と頭部のポーズを生成する。
論文 参考訳(メタデータ) (2023-10-11T06:56:08Z) - FaceDiffuser: Speech-Driven 3D Facial Animation Synthesis Using
Diffusion [0.0]
音声駆動型顔アニメーションを生成するための非決定論的ディープラーニングモデルFaceDiffuserを提案する。
提案手法は拡散法に基づいて,事前学習した大規模音声表現モデル HuBERT を用いて音声入力を符号化する。
また、ブレンドシェープに基づくリップキャラクタに基づく、新たな社内データセットも導入する。
論文 参考訳(メタデータ) (2023-09-20T13:33:00Z) - DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with
Diffusion [68.85904927374165]
拡散駆動型音声から3次元の顔メッシュ合成であるDF-3DFaceを提案する。
拡散に基づく音声と3次元顔の複雑な一対多関係をキャプチャする。
最先端の手法よりもリアルな顔アニメーションを同時に実現します。
論文 参考訳(メタデータ) (2023-08-23T04:14:55Z) - Audio-Driven Talking Face Generation with Diverse yet Realistic Facial
Animations [61.65012981435094]
DIRFAは、異なるが現実的な顔のアニメーションを同一の駆動音声から生成できる新しい方法である。
同一音声に対して妥当な顔のアニメーションの変動に対応するため,トランスフォーマーに基づく確率的マッピングネットワークを設計する。
DIRFAは現実的な顔のアニメーションを効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-04-18T12:36:15Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-artメソッドは、ターゲットアクターの顔トポロジを変形させ、ターゲットアクターのアイデンティティ固有の話し方や顔の慣用性を考慮せずに入力オーディオを同期させる。
本稿では,音声による表情合成手法であるImitatorについて述べる。
提案手法は,ターゲットアクターの発話スタイルを保ちながら,入力音声から時間的コヒーレントな表情を生成する。
論文 参考訳(メタデータ) (2022-12-30T19:00:02Z) - MeshTalk: 3D Face Animation from Speech using Cross-Modality
Disentanglement [142.9900055577252]
本研究では,顔全体の映像合成を高度に実現するための汎用的な音声駆動顔アニメーション手法を提案する。
このアプローチは、目のまばたきやまばたきなど、音声信号とは無関係な顔の一部のアニメーションを再現すると同時に、高精度な唇の動きを保証します。
論文 参考訳(メタデータ) (2021-04-16T17:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。