Kernel Alignment for Quantum Support Vector Machines Using Genetic
Algorithms
- URL: http://arxiv.org/abs/2312.01562v1
- Date: Mon, 4 Dec 2023 01:36:26 GMT
- Title: Kernel Alignment for Quantum Support Vector Machines Using Genetic
Algorithms
- Authors: Floyd M. Creevey, Jamie A. Heredge, Martin E. Sevior, Lloyd C. L.
Hollenberg
- Abstract summary: We leverage the GASP (Genetic Algorithm for State Preparation) framework for gate sequence selection in QSVM kernel circuits.
Benchmarking against classical and quantum kernels reveals GA-generated circuits matching or surpassing standard techniques.
Our automated framework reduces trial and error, and enables improved QSVM based machine learning performance for finance, healthcare, and materials science applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The data encoding circuits used in quantum support vector machine (QSVM)
kernels play a crucial role in their classification accuracy. However, manually
designing these circuits poses significant challenges in terms of time and
performance. To address this, we leverage the GASP (Genetic Algorithm for State
Preparation) framework for gate sequence selection in QSVM kernel circuits. We
explore supervised and unsupervised kernel loss functions' impact on encoding
circuit optimisation and evaluate them on diverse datasets for binary and
multiple-class scenarios. Benchmarking against classical and quantum kernels
reveals GA-generated circuits matching or surpassing standard techniques. We
analyse the relationship between test accuracy and quantum kernel entropy, with
results indicating a positive correlation. Our automated framework reduces
trial and error, and enables improved QSVM based machine learning performance
for finance, healthcare, and materials science applications.
Related papers
- Enhanced feature encoding and classification on distributed quantum hardware [0.0]
We propose a novel feature map optimization strategy for Quantum Support Vector Machines (QSVMs)
We take into account backend-specific parameters, including qubit connectivity, native gate sets, and circuit depth, which are critical factors in noisy quantum devices.
The study was carried out by partitioning each quantum processing unit (QPU) into several sub-units with the same topology to implement individual QSVM instances.
arXiv Detail & Related papers (2024-12-02T16:14:37Z) - Quantum Patch-Based Autoencoder for Anomaly Segmentation [44.99833362998488]
We introduce a patch-based quantum autoencoder (QPB-AE) for image anomaly segmentation.
QPB-AE reconstructs the quantum state of the embedded input patches, computing an anomaly map directly from measurement.
We evaluate its performance across multiple datasets and parameter configurations.
arXiv Detail & Related papers (2024-04-26T08:42:58Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFP devices serve as excellent carriers for binary neural network (BNN) computations.
We propose SupeRBNN, an AQFP-based randomized BNN acceleration framework.
We show that our design achieves an energy efficiency of approximately 7.8x104 times higher than that of the ReRAM-based BNN framework.
arXiv Detail & Related papers (2023-09-21T16:14:42Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Variational Quantum Approximate Support Vector Machine With Inference
Transfer [0.8057006406834467]
A kernel-based quantum machine learning technique for hyperlinear classification of complex data is presented.
A support vector machine can be realized inherently and explicitly on quantum circuits.
The accuracy of iris data classification reached 98.8%.
arXiv Detail & Related papers (2022-06-29T09:56:59Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
We investigate quantum support vector machine (QSVM) algorithm and its circuit version on present quantum computers.
We compute the efficiency of the QSVM circuit implementation method by encoding training and testing data sample in quantum circuits.
We highlight the technical difficulties one would face while applying the QSVM algorithm on current NISQ era devices.
arXiv Detail & Related papers (2021-12-13T18:59:39Z) - Ansatz-Independent Variational Quantum Classifier [0.0]
We show that variational quantum classifiers (VQCs) fit inside the well-known kernel method.
We also propose a variational circuit realization (VCR) for designing efficient quantum circuits for a given unitary operator.
arXiv Detail & Related papers (2021-02-02T21:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.