Investigation of Quantum Support Vector Machine for Classification in
NISQ era
- URL: http://arxiv.org/abs/2112.06912v1
- Date: Mon, 13 Dec 2021 18:59:39 GMT
- Title: Investigation of Quantum Support Vector Machine for Classification in
NISQ era
- Authors: Anekait Kariya, Bikash K. Behera
- Abstract summary: We investigate quantum support vector machine (QSVM) algorithm and its circuit version on present quantum computers.
We compute the efficiency of the QSVM circuit implementation method by encoding training and testing data sample in quantum circuits.
We highlight the technical difficulties one would face while applying the QSVM algorithm on current NISQ era devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum machine learning is at the crossroads of two of the most exciting
current areas of research; quantum computing and classical machine learning. It
explores the interaction between quantum computing and machine learning,
investigating how results and techniques from one field can be used to solve
the problems of the other. Here, we investigate quantum support vector machine
(QSVM) algorithm and its circuit version on present quantum computers. We
propose a general encoding procedure extending QSVM algorithm, which would
allow one to feed vectors with higher dimension in the training-data oracle of
QSVM. We compute the efficiency of the QSVM circuit implementation method by
encoding training and testing data sample in quantum circuits and running them
on quantum simulator and real chip for two datasets; 6/9 and banknote. We
highlight the technical difficulties one would face while applying the QSVM
algorithm on current NISQ era devices. Then we propose a new method to classify
these datasets with enhanced efficiencies for the above datasets both on
simulator and real chips.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
We investigate the history of quantum computing, examine existing QML algorithms, and present a simplified procedure for setting up simulations of QML algorithms.
We conduct simulations on a dataset using both traditional machine learning and quantum machine learning approaches.
arXiv Detail & Related papers (2023-11-17T07:33:42Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
We examine our quantum machine learning models, which are based on quantum support vector classification (QSVC) and quantum support vector regression (QSVR)
We investigate these models using a quantum-circuit simulator, both with and without noise, as well as the IonQ Harmony quantum processor.
For the classification tasks, the performance of our QSVC models using 4 qubits of the trapped-ion quantum computer was comparable to that obtained from noiseless quantum-circuit simulations.
arXiv Detail & Related papers (2023-07-05T08:06:41Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
Implementation of variational Quantum Machine Learning (QML) algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices has issues related to the high number of qubits needed and the noise associated with multi-qubit gates.
We propose a variational QML algorithm using a dressed quantum network to address these issues.
Unlike in most other existing QML algorithms, our quantum circuit consists only of single-qubit gates, making it robust against noise.
arXiv Detail & Related papers (2020-07-20T16:29:32Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.