Survey on deep learning in multimodal medical imaging for cancer
detection
- URL: http://arxiv.org/abs/2312.01573v1
- Date: Mon, 4 Dec 2023 02:07:47 GMT
- Title: Survey on deep learning in multimodal medical imaging for cancer
detection
- Authors: Yan Tian, Zhaocheng Xu, Yujun Ma, Weiping Ding, Ruili Wang, Zhihong
Gao, Guohua Cheng, Linyang He, Xuran Zhao
- Abstract summary: multimodal cancer detection is one of the key research methods for cancer diagnosis.
Deep learning-based object detection has made significant developments due to its strength in semantic feature extraction and nonlinear function fitting.
multimodal cancer detection remains challenging due to morphological differences in lesions, interpatient variability, difficulty in annotation, and imaging artifacts.
- Score: 15.304299929182486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of multimodal cancer detection is to determine the locations and
categories of lesions by using different imaging techniques, which is one of
the key research methods for cancer diagnosis. Recently, deep learning-based
object detection has made significant developments due to its strength in
semantic feature extraction and nonlinear function fitting. However, multimodal
cancer detection remains challenging due to morphological differences in
lesions, interpatient variability, difficulty in annotation, and imaging
artifacts. In this survey, we mainly investigate over 150 papers in recent
years with respect to multimodal cancer detection using deep learning, with a
focus on datasets and solutions to various challenges such as data annotation,
variance between classes, small-scale lesions, and occlusion. We also provide
an overview of the advantages and drawbacks of each approach. Finally, we
discuss the current scope of work and provide directions for the future
development of multimodal cancer detection.
Related papers
- Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability [2.8145472964232137]
Using multi-modal techniques, integrating both image and non-image data, marks a transformative advancement in breast cancer diagnosis.
This review utilizes multi-modal data and emphasizes explainability to enhance diagnostic accuracy, clinician confidence, and patient engagement.
arXiv Detail & Related papers (2024-06-07T19:23:22Z) - Pancreatic Tumor Segmentation as Anomaly Detection in CT Images Using Denoising Diffusion Models [4.931603088067152]
This study presents a novel approach to pancreatic tumor detection, employing weak supervision anomaly detection through denoising diffusion algorithms.
The method enables seamless translation of images between diseased and healthy subjects, resulting in detailed anomaly maps without requiring complex training protocols and segmentation masks.
Recognizing the low survival rates of pancreatic cancer, this study emphasizes the need for continued research to leverage diffusion models' efficiency in medical segmentation tasks.
arXiv Detail & Related papers (2024-06-04T16:38:11Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - Computer-Aided Cancer Diagnosis via Machine Learning and Deep Learning:
A comparative review [0.0]
We show that tremendous improvements have been made in the early detection of cancerous tumors and tissues.
We discuss the challenges of cancer research related to the large discrepancies in the images.
We provide some notable results in the field for lung, breast, and skin cancers.
arXiv Detail & Related papers (2022-10-19T19:30:56Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
We process two public datasets to set up a benchmark cohort of 341 patient in total for studying outcome prediction of metastatic cancer.
We propose two injective multiple instance pooling functions that are better suited to outcome prediction.
Our results show that multiple instance learning with injective pooling functions can achieve state-of-the-art performance in the non-small-cell lung cancer CT and head and neck CT outcome prediction benchmarking tasks.
arXiv Detail & Related papers (2022-03-09T16:58:03Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - A Review of Generative Adversarial Networks in Cancer Imaging: New
Applications, New Solutions [12.1951719081621]
Recent advancements in Generative Adrial Networks (GANs) in computer vision may provide a basis for enhanced capabilities in cancer detection and analysis.
We assess the potential of GANs to address a number of key challenges of cancer imaging, including data scarcity and imbalance.
We provide a critical appraisal of the existing literature of GANs applied to cancer imagery, together with suggestions on future research directions to address these challenges.
arXiv Detail & Related papers (2021-07-20T14:57:51Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.