SchurVINS: Schur Complement-Based Lightweight Visual Inertial Navigation System
- URL: http://arxiv.org/abs/2312.01616v6
- Date: Wed, 17 Jul 2024 08:49:17 GMT
- Title: SchurVINS: Schur Complement-Based Lightweight Visual Inertial Navigation System
- Authors: Yunfei Fan, Tianyu Zhao, Guidong Wang,
- Abstract summary: We propose a novel filter-based VINS framework named SchurVINS.
It could guarantee both high accuracy by building a complete residual model and low computational complexity.
Experiments on EuRoC and TUM-VI datasets show that our method notably outperforms state-of-the-art (SOTA) methods in both accuracy and computational complexity.
- Score: 8.017085402991189
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accuracy and computational efficiency are the most important metrics to Visual Inertial Navigation System (VINS). The existing VINS algorithms with either high accuracy or low computational complexity, are difficult to provide the high precision localization in resource-constrained devices. To this end, we propose a novel filter-based VINS framework named SchurVINS, which could guarantee both high accuracy by building a complete residual model and low computational complexity with Schur complement. Technically, we first formulate the full residual model where Gradient, Hessian and observation covariance are explicitly modeled. Then Schur complement is employed to decompose the full model into ego-motion residual model and landmark residual model. Finally, Extended Kalman Filter (EKF) update is implemented in these two models with high efficiency. Experiments on EuRoC and TUM-VI datasets show that our method notably outperforms state-of-the-art (SOTA) methods in both accuracy and computational complexity. The experimental code of SchurVINS is available at https://github.com/bytedance/SchurVINS.
Related papers
- Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification [0.0]
This work analyzes the influence of hyper parameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures.<n>All models are trained on the ImageNet-1K dataset under consistent training settings.<n>Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed.
arXiv Detail & Related papers (2025-07-31T07:47:30Z) - Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation [50.23504065567638]
This paper introduces textbfTD3, a novel textbfDataset textbfDistillation method within a meta-learning framework.
TD3 distills a fully expressive emphsynthetic sequence summary from original data.
An augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the emphouter-loop.
arXiv Detail & Related papers (2025-02-05T03:13:25Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.
Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Attention based Dual-Branch Complex Feature Fusion Network for
Hyperspectral Image Classification [1.3249509346606658]
The proposed model is evaluated on the Pavia University and Salinas datasets.
Results show that the proposed model outperforms state-of-the-art methods in terms of overall accuracy, average accuracy, and Kappa.
arXiv Detail & Related papers (2023-11-02T22:31:24Z) - Accurate deep learning sub-grid scale models for large eddy simulations [0.0]
We present two families of sub-grid scale (SGS) turbulence models developed for large-eddy simulation (LES) purposes.
Their development required the formulation of physics-informed robust and efficient Deep Learning (DL) algorithms.
Explicit filtering of data from direct simulations of canonical channel flow at two friction Reynolds numbers provided accurate data for training and testing.
arXiv Detail & Related papers (2023-07-19T15:30:06Z) - Unbiased Learning of Deep Generative Models with Structured Discrete
Representations [7.9057320008285945]
We propose novel algorithms for learning structured variational autoencoders (SVAEs)
We are the first to demonstrate the SVAE's ability to handle multimodal uncertainty when data is missing by incorporating discrete latent variables.
Our memory-efficient implicit differentiation scheme makes the SVAE tractable to learn via gradient descent, while demonstrating robustness to incomplete optimization.
arXiv Detail & Related papers (2023-06-14T03:59:21Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
arXiv Detail & Related papers (2023-05-17T15:36:08Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
We present a novel technique to perform sparse graph recovery by optimizing deep unrolled networks.
Our model, uGLAD, builds upon and extends the state-of-the-art model GLAD to the unsupervised setting.
We evaluate model results on synthetic Gaussian data, non-Gaussian data generated from Gene Regulatory Networks, and present a case study in anaerobic digestion.
arXiv Detail & Related papers (2022-05-23T20:20:27Z) - Efficient Person Search: An Anchor-Free Approach [86.45858994806471]
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images.
To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN.
In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs.
arXiv Detail & Related papers (2021-09-01T07:01:33Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
We propose a new GCP meta-layer that uses SVD in the forward pass, and Pad'e Approximants in the backward propagation to compute the gradients.
The proposed meta-layer has been integrated into different CNN models and achieves state-of-the-art performances on both large-scale and fine-grained datasets.
arXiv Detail & Related papers (2021-05-06T08:03:45Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
We propose two regularizers to prevent hypersphere collapse in deep SVDD.
The first regularizer is based on injecting random noise via the standard cross-entropy loss.
The second regularizer penalizes the minibatch variance when it becomes too small.
arXiv Detail & Related papers (2020-01-24T03:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.