論文の概要: Risk-Controlling Model Selection via Guided Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2312.01692v1
- Date: Mon, 4 Dec 2023 07:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 16:04:49.904081
- Title: Risk-Controlling Model Selection via Guided Bayesian Optimization
- Title(参考訳): 誘導ベイズ最適化によるリスク制御モデル選択
- Authors: Bracha Laufer-Goldshtein, Adam Fisch, Regina Barzilay, Tommi Jaakkola
- Abstract要約: 他の競合するメトリクスに対して有用でありながら、特定のリスクに対するユーザ指定の制限に固執する構成を見つけます。
提案手法は,指定された関心領域に属する最適構成の集合を同定する。
提案手法は,低誤差率,等式予測,スプリアス相関処理,生成モデルにおける速度と歪みの管理,計算コストの削減など,複数のデシダラタを用いたタスクに対する有効性を示す。
- 参考スコア(独自算出の注目度): 35.53469358591976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adjustable hyperparameters of machine learning models typically impact
various key trade-offs such as accuracy, fairness, robustness, or inference
cost. Our goal in this paper is to find a configuration that adheres to
user-specified limits on certain risks while being useful with respect to other
conflicting metrics. We solve this by combining Bayesian Optimization (BO) with
rigorous risk-controlling procedures, where our core idea is to steer BO
towards an efficient testing strategy. Our BO method identifies a set of Pareto
optimal configurations residing in a designated region of interest. The
resulting candidates are statistically verified and the best-performing
configuration is selected with guaranteed risk levels. We demonstrate the
effectiveness of our approach on a range of tasks with multiple desiderata,
including low error rates, equitable predictions, handling spurious
correlations, managing rate and distortion in generative models, and reducing
computational costs.
- Abstract(参考訳): 機械学習モデルの調整可能なハイパーパラメータは通常、正確性、公平性、堅牢性、推論コストなど、さまざまな重要なトレードオフに影響を与える。
本論文の目的は,他の競合する指標に対して有用でありながら,特定のリスクに対するユーザ指定の制限に固執する構成を見つけることである。
ベイズ最適化(BO)と厳密なリスク制御手法を組み合わせることでこの問題を解決する。
BO法では,指定された関心領域に属するパレート最適構成の集合を同定する。
結果の候補は統計的に検証され、最高のパフォーマンス構成が保証されたリスクレベルで選択される。
提案手法は,誤り率の低さ,公平な予測,散発的相関処理,生成モデルの管理率と歪み,計算コストの低減など,複数のデシデラタを持つタスクに対して有効であることを示す。
関連論文リスト
- Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization [36.14499894307206]
この研究は、リスク尺度の量子化に関する統計的保証を提供するために設計された、Learning-then-test (LTT)の変種を導入する。
本稿では,提案アルゴリズムを無線アクセススケジューリング問題に適用することにより,本手法の実用的利点について述べる。
論文 参考訳(メタデータ) (2024-07-24T15:30:12Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Efficiently Controlling Multiple Risks with Pareto Testing [34.83506056862348]
本稿では,多目的最適化と複数仮説テストを組み合わせた2段階プロセスを提案する。
自然言語処理(NLP)アプリケーションにおいて,大規模トランスフォーマーモデルの実行を確実に高速化する手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-14T15:54:39Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Risk-averse Heteroscedastic Bayesian Optimization [45.12421486836736]
リスク回避型ヘテロセダスティックベイズ最適化アルゴリズム(RAHBO)を提案する。
RAHBOは、ハイリターンと低ノイズ分散の解を、ハエの騒音分布を学習しながら同定することを目的としている。
単一のソリューションのみを識別しなければならないアプリケーションに対して、最終的な決定ポイントを報告するための堅牢なルールを提供します。
論文 参考訳(メタデータ) (2021-11-05T17:38:34Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Continuous Mean-Covariance Bandits [39.820490484375156]
本稿では,選択肢相関を考慮した連続平均共分散帯域モデルを提案する。
CMCBでは、与えられた選択肢の重みベクトルを逐次選択し、決定に従ってランダムなフィードバックを観察する学習者がいる。
最適な後悔(対数的因子を含む)を伴う新しいアルゴリズムを提案し、それらの最適性を検証するために一致した下界を提供する。
論文 参考訳(メタデータ) (2021-02-24T06:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。