論文の概要: Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization
- arxiv url: http://arxiv.org/abs/2407.17358v1
- Date: Wed, 24 Jul 2024 15:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 13:25:07.075803
- Title: Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization
- Title(参考訳): 量子学習Then-Test:ハイパーパラメータ最適化のための量子ベースのリスク制御
- Authors: Amirmohammad Farzaneh, Sangwoo Park, Osvaldo Simeone,
- Abstract要約: この研究は、リスク尺度の量子化に関する統計的保証を提供するために設計された、Learning-then-test (LTT)の変種を導入する。
本稿では,提案アルゴリズムを無線アクセススケジューリング問題に適用することにより,本手法の実用的利点について述べる。
- 参考スコア(独自算出の注目度): 36.14499894307206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing adoption of Artificial Intelligence (AI) in engineering problems calls for the development of calibration methods capable of offering robust statistical reliability guarantees. The calibration of black box AI models is carried out via the optimization of hyperparameters dictating architecture, optimization, and/or inference configuration. Prior work has introduced learn-then-test (LTT), a calibration procedure for hyperparameter optimization (HPO) that provides statistical guarantees on average performance measures. Recognizing the importance of controlling risk-aware objectives in engineering contexts, this work introduces a variant of LTT that is designed to provide statistical guarantees on quantiles of a risk measure. We illustrate the practical advantages of this approach by applying the proposed algorithm to a radio access scheduling problem.
- Abstract(参考訳): エンジニアリング問題における人工知能(AI)の採用の増加は、堅牢な統計的信頼性を保証するキャリブレーション手法の開発を要求する。
ブラックボックスAIモデルの校正は、アーキテクチャ、最適化、および/または推論設定を規定するハイパーパラメータの最適化によって行われる。
従来の研究は、平均的な性能測定の統計的保証を提供するハイパーパラメータ最適化(HPO)の校正手順であるLearning-then-test (LTT)を導入している。
工学的文脈におけるリスク認識の目的を制御することの重要性を認識し、リスク尺度の定量化に関する統計的保証を提供するために設計されたLTTの変種を導入する。
本稿では,提案アルゴリズムを無線アクセススケジューリング問題に適用することにより,本手法の実用的利点について述べる。
関連論文リスト
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
システムの物理モデルを減らすことは最適化プロセスに組み込むことができ、それを加速することができる。
これらのモデルは実際のシステムの近似を提供することができ、それらの評価は極めて安価である。
安全はベイズ最適化のようなオンライン最適化手法にとって重要な基準である。
論文 参考訳(メタデータ) (2023-12-12T13:59:26Z) - Risk-Controlling Model Selection via Guided Bayesian Optimization [35.53469358591976]
他の競合するメトリクスに対して有用でありながら、特定のリスクに対するユーザ指定の制限に固執する構成を見つけます。
提案手法は,指定された関心領域に属する最適構成の集合を同定する。
提案手法は,低誤差率,等式予測,スプリアス相関処理,生成モデルにおける速度と歪みの管理,計算コストの削減など,複数のデシダラタを用いたタスクに対する有効性を示す。
論文 参考訳(メタデータ) (2023-12-04T07:29:44Z) - Efficiently Controlling Multiple Risks with Pareto Testing [34.83506056862348]
本稿では,多目的最適化と複数仮説テストを組み合わせた2段階プロセスを提案する。
自然言語処理(NLP)アプリケーションにおいて,大規模トランスフォーマーモデルの実行を確実に高速化する手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-14T15:54:39Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
未知のハイパーパラメータを持つ設定において、ロバストなガウス過程の均一なエラー境界を導入する。
提案手法はハイパーパラメータの空間における信頼領域を計算し,モデル誤差に対する確率的上限を求める。
実験により、バニラ法やベイズ法よりもバニラ法の方がはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-06T17:10:01Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
強化学習(Reinforcement Learning, RL)は、非線形最適制御問題を扱うための制御手法である。
展示された約束にもかかわらず、RLは産業的な実践への顕著な翻訳をまだ見ていない。
確率の高い共同確率制約の満足度を保証できる「オークル」支援型制約付きQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T13:16:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。