The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems
- URL: http://arxiv.org/abs/2407.05341v1
- Date: Sun, 7 Jul 2024 12:16:01 GMT
- Title: The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems
- Authors: Jakob Mokander, Margi Sheth, David Watson, Luciano Floridi,
- Abstract summary: There still exists a gap between principles and practices in AI ethics.
One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical challenges. Nevertheless, pragmatic problem-solving demands that things should be sorted so that their grouping will promote successful actions for some specific end. In this article, we review and compare previous attempts to classify AI systems for the purpose of implementing AI governance in practice. We find that attempts to classify AI systems found in previous literature use one of three mental model. The Switch, i.e., a binary approach according to which systems either are or are not considered AI systems depending on their characteristics. The Ladder, i.e., a risk-based approach that classifies systems according to the ethical risks they pose. And the Matrix, i.e., a multi-dimensional classification of systems that take various aspects into account, such as context, data input, and decision-model. Each of these models for classifying AI systems comes with its own set of strengths and weaknesses. By conceptualising different ways of classifying AI systems into simple mental models, we hope to provide organisations that design, deploy, or regulate AI systems with the conceptual tools needed to operationalise AI governance in practice.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - AI Deception: A Survey of Examples, Risks, and Potential Solutions [20.84424818447696]
This paper argues that a range of current AI systems have learned how to deceive humans.
We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth.
arXiv Detail & Related papers (2023-08-28T17:59:35Z) - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering [20.644494592443245]
We present a Responsible AI Pattern Catalogue based on the results of a Multivocal Literature Review (MLR)
Rather than staying at the principle or algorithm level, we focus on patterns that AI system stakeholders can undertake in practice to ensure that the developed AI systems are responsible throughout the entire governance and engineering lifecycle.
arXiv Detail & Related papers (2022-09-12T00:09:08Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
We examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy.
We suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.
arXiv Detail & Related papers (2022-06-23T21:13:10Z) - Responsible-AI-by-Design: a Pattern Collection for Designing Responsible
AI Systems [12.825892132103236]
Many ethical regulations, principles, and guidelines for responsible AI have been issued recently.
This paper identifies one missing element as the system-level guidance: how to design the architecture of responsible AI systems.
We present a summary of design patterns that can be embedded into the AI systems as product features to contribute to responsible-AI-by-design.
arXiv Detail & Related papers (2022-03-02T07:30:03Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
This paper argues that AI software is still software and needs to be approached from the software development perspective.
We wish to discuss whether the focus should be on AI ethics or, more broadly, the quality of an AI system.
arXiv Detail & Related papers (2021-01-29T17:37:44Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.