Optimal phase estimation in finite-dimensional Fock space
- URL: http://arxiv.org/abs/2312.01965v2
- Date: Fri, 15 Mar 2024 12:55:25 GMT
- Title: Optimal phase estimation in finite-dimensional Fock space
- Authors: Jin-Feng Qin, Yuqian Xu, Jing Liu,
- Abstract summary: In the finite-dimensional Fock space the NOON state ceases to be optimal when the particle number is fixed yet not equal to the space dimension minus one.
We present three theorems to answer this question and provide a complete optimal scheme to realize the ultimate precision limit in practice.
- Score: 3.411077163447709
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Phase estimation is a major mission in quantum metrology. In the finite-dimensional Fock space the NOON state ceases to be optimal when the particle number is fixed yet not equal to the space dimension minus one, and what is the true optimal state in this case is still undiscovered. Hereby we present three theorems to answer this question and provide a complete optimal scheme to realize the ultimate precision limit in practice. These optimal states reveal an important fact that the space dimension could be treated as a metrological resource, and the given scheme is particularly useful in scenarios where weak light or limited particle number is demanded.
Related papers
- Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states [5.626518050662406]
We find that two-mode squeezed vacuum states are the optimal inputs and the corresponding precision bound is superior to the Heisenberg limit by a factor of 2.
Our work may demonstrate a significant and promising step towards practical quantum metrology.
arXiv Detail & Related papers (2024-07-18T12:01:19Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Fundamental limitations of time measurement precision in Hong-Ou-Mandel
interferometry [0.0]
In quantum mechanics, the precision achieved in parameter estimation using a quantum state as a probe is determined by the measurement strategy employed.
We show that the scaling of precision with visibility depends on the effective area in time-frequency phase space occupied by the state used as a probe, and we find that an optimal scaling exists.
arXiv Detail & Related papers (2023-09-19T14:15:22Z) - Quantum limit to subdiffraction incoherent optical imaging. III. Numerical analysis [0.0]
This work performs a numerical analysis of the quantum bound to verify that the law works well for nonzero object sizes in reality.
We also use the numerical bounds to study the optimality of a measurement called spatial-mode demultiplexing or SPADE.
arXiv Detail & Related papers (2023-08-08T15:09:21Z) - The minimal length: a cut-off in disguise? [0.0]
The minimal-length paradigm is a possible implication of quantum gravity at low energies.
We show that this modification is equivalent to a cut-off in the space conjugate to the position representation.
We find a direct relation between the ensuing bound in wave-number space and the minimal-length scale.
arXiv Detail & Related papers (2023-02-09T11:03:31Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
We show that efficiency of Metropolis-Hastings (M-H) algorithms in discrete spaces can be characterized by an acceptance rate that is independent of the target distribution.
Knowledge of the optimal acceptance rate allows one to automatically tune the neighborhood size of a proposal distribution in a discrete space, directly analogous to step-size control in continuous spaces.
arXiv Detail & Related papers (2022-09-16T22:09:53Z) - Computationally Efficient PAC RL in POMDPs with Latent Determinism and
Conditional Embeddings [97.12538243736705]
We study reinforcement learning with function approximation for large-scale Partially Observable Decision Processes (POMDPs)
Our algorithm provably scales to large-scale POMDPs.
arXiv Detail & Related papers (2022-06-24T05:13:35Z) - Only Classical Parameterised States have Optimal Measurements under
Least Squares Loss [0.0]
We introduce a framework that allows one to conclusively establish if a measurement is optimal in the non-asymptotic regime.
We prove a no-go theorem that shows that only classical states admit optimal measurements under the most common choice of error measurement: least squares.
arXiv Detail & Related papers (2022-05-27T17:59:53Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.