論文の概要: Efficient LDPC Decoding using Physical Computation
- arxiv url: http://arxiv.org/abs/2312.02161v1
- Date: Thu, 21 Sep 2023 01:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:11:40.222012
- Title: Efficient LDPC Decoding using Physical Computation
- Title(参考訳): 物理計算を用いた効率的なLDPCデコーディング
- Authors: Uday Kumar Reddy Vengalam, Andrew Hahn, Yongchao Liu, Anshujit Sharma,
Hui Wu, and Michael Huang
- Abstract要約: LDPCデコーディングはIsingマシンのような物理機構の大幅な加速の恩恵を受ける。
共同設計のIsingマシンベースのシステムは,3桁の速度向上を実現している。
物理計算手法は、ハードワイリング・オブ・ザ・アーティカルなアルゴリズムよりも優れている。
- 参考スコア(独自算出の注目度): 7.942478099762508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to 5G deployment, there is significant interest in LDPC decoding. While
much research is devoted on efficient hardwiring of algorithms based on Belief
Propagation (BP), it has been shown that LDPC decoding can be formulated as a
combinatorial optimization problem, which could benefit from significant
acceleration of physical computation mechanisms such as Ising machines. This
approach has so far resulted in poor performance. This paper shows that the
reason is not fundamental but suboptimal hardware and formulation. A
co-designed Ising machine-based system can improve speed by 3 orders of
magnitude. As a result, a physical computation approach can outperform
hardwiring state-of-the-art algorithms. In this paper, we show such an
augmented Ising machine that is 4.4$\times$ more energy efficient than the
state of the art in the literature.
- Abstract(参考訳): 5Gのデプロイメントのため、LDPCのデコードには大きな関心がある。
多くの研究は、Belief Propagation (BP)に基づくアルゴリズムの効率的なハードウィリングに費やされているが、LDPC復号化は、Isingマシンのような物理計算機構の大幅な加速の恩恵を受ける、組合せ最適化問題として定式化できることが示されている。
このアプローチは、これまでのところパフォーマンスが劣っている。
本稿では,その理由は基本的ではなく,最適ハードウェアと定式化であることを示す。
共同設計のイジングマシンベースのシステムは、速度を3桁改善することができる。
その結果、物理計算手法はハードワイリングのアルゴリズムよりも優れている。
本稿では,このような拡張型イジングマシンについて,文献の最先端技術よりも4.4$\times$のエネルギー効率を示す。
関連論文リスト
- Dynamic Range Reduction via Branch-and-Bound [1.533133219129073]
ハードウェアアクセラレーターを強化するための主要な戦略は、算術演算における精度の低下である。
本稿ではQUBO問題における精度向上のための完全原理分岐境界アルゴリズムを提案する。
実験は、実際の量子アニール上でのアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-17T03:07:56Z) - Solving Boltzmann Optimization Problems with Deep Learning [0.21485350418225244]
Isingモデルは、高エネルギー効率計算のための将来のフレームワークとして、特に有望であることを示している。
イジングシステムは、計算のエネルギー消費に対する熱力学的限界に近づくエネルギーで操作することができる。
Isingベースのハードウェアを作成する際の課題は、基本的な非決定論的ハードウェア上で正しい結果を生成する有用な回路を最適化することである。
論文 参考訳(メタデータ) (2024-01-30T19:52:02Z) - All-to-all reconfigurability with sparse and higher-order Ising machines [0.0]
オール・ツー・オールのネットワーク機能をエミュレートする多重アーキテクチャを導入する。
適応並列テンパリングアルゴリズムの実行は、競合するアルゴリズムと事前ファクターの利点を示す。
pビットIMのスケールされた磁気バージョンは、汎用最適化のための最先端技術よりも桁違いに改善される可能性がある。
論文 参考訳(メタデータ) (2023-11-21T20:27:02Z) - Hardware Acceleration of Explainable Artificial Intelligence [5.076419064097733]
我々は,既存のハードウェアアクセラレーターを用いて,様々なXAIアルゴリズムを高速化する,シンプルかつ効率的なフレームワークを提案する。
提案手法はリアルタイムな結果解釈につながる可能性がある。
論文 参考訳(メタデータ) (2023-05-04T19:07:29Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
ニューロモルフィックコンピューティング(Neuromorphic Computing)は、アナログメモリの計算によってこの不均衡に直面している新興パラダイムである。
この研究は、異なる学習アルゴリズムがCompute-In-Memoryベースのハードウェアに与える影響を初めて比較し、その逆も行った。
論文 参考訳(メタデータ) (2022-12-29T15:10:59Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED)は多くのコンピュータビジョンアルゴリズムとアプリケーションの中心にある。
本稿では,コンピュータビジョンの応用シナリオに特化したQRベースのED手法を提案する。
論文 参考訳(メタデータ) (2022-07-09T09:14:12Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。