論文の概要: All-to-all reconfigurability with sparse and higher-order Ising machines
- arxiv url: http://arxiv.org/abs/2312.08748v3
- Date: Thu, 26 Sep 2024 18:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:16:50.151309
- Title: All-to-all reconfigurability with sparse and higher-order Ising machines
- Title(参考訳): スパースおよび高次イジングマシンによるオール・ツー・オール再構成性
- Authors: Srijan Nikhar, Sidharth Kannan, Navid Anjum Aadit, Shuvro Chowdhury, Kerem Y. Camsari,
- Abstract要約: オール・ツー・オールのネットワーク機能をエミュレートする多重アーキテクチャを導入する。
適応並列テンパリングアルゴリズムの実行は、競合するアルゴリズムと事前ファクターの利点を示す。
pビットIMのスケールされた磁気バージョンは、汎用最適化のための最先端技術よりも桁違いに改善される可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain-specific hardware to solve computationally hard optimization problems has generated tremendous excitement. Here, we evaluate probabilistic bit (p-bit) based Ising Machines (IM) on the 3-regular 3-Exclusive OR Satisfiability (3R3X), as a representative hard optimization problem. We first introduce a multiplexed architecture that emulates all-to-all network functionality while maintaining highly parallelized chromatic Gibbs sampling. We implement this architecture in single Field-Programmable Gate Arrays (FPGA) and show that running the adaptive parallel tempering algorithm demonstrates competitive algorithmic and prefactor advantages over alternative IMs by D-Wave, Toshiba, and Fujitsu. We also implement higher-order interactions that lead to better prefactors without changing algorithmic scaling for the XORSAT problem. Even though FPGA implementations of p-bits are still not quite as fast as the best possible greedy algorithms accelerated on Graphics Processing Units (GPU), scaled magnetic versions of p-bit IMs could lead to orders of magnitude improvements over the state of the art for generic optimization.
- Abstract(参考訳): 計算的にハードな最適化問題を解決するためのドメイン固有ハードウェアは、非常に興奮した。
本稿では,3正規な3つの排他的OR満足度(3R3X)に基づく確率ビット(pビット)ベースのIsing Machines(IM)を代表的ハード最適化問題として評価する。
まず、全ネットワーク機能をエミュレートし、高度に並列化された色付きギブズサンプリングを維持しながら多重化アーキテクチャを導入する。
本研究では,このアーキテクチャを単一FPGA(Field-Programmable Gate Array)に実装し,D-Wave,Toshiba,Fujitsuによる代替IMに対して,適応並列テンパリングアルゴリズムの実行により,競合するアルゴリズムと事前ファクタの優位性を示すことを示す。
また、XORSAT問題に対するアルゴリズムスケーリングを変更することなく、より優れたプレファクターをもたらす高次相互作用を実装している。
pビットのFPGA実装は、GPU(Graphics Processing Units)上で加速される最良のグリードアルゴリズムほど高速ではないが、スケールしたpビットIMの磁気バージョンは、汎用最適化の最先端よりも大幅に改善される可能性がある。
関連論文リスト
- INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
計算グラフとして表される関数を考えると、従来のアーキテクチャはn階勾配を効率的に計算する上で困難に直面している。
InR-Archは,n階勾配の計算グラフをハードウェア最適化データフローアーキテクチャに変換するフレームワークである。
1.8-4.8x と 1.5-3.6x の高速化を CPU と GPU のベースラインと比較した結果を示す。
論文 参考訳(メタデータ) (2023-08-11T04:24:39Z) - QFactor: A Domain-Specific Optimizer for Quantum Circuit Instantiation [0.8258451067861933]
本稿では、量子回路のインスタンス化、合成、およびコンパイル法で使用される数値最適化演算のためのドメイン固有アルゴリズムを提案する。
QFactorは解析手法とともにテンソルネットワークの定式化と反復的な局所最適化アルゴリズムを用いて問題パラメータの数を削減する。
論文 参考訳(メタデータ) (2023-06-13T21:51:20Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Size optimization of CNOT circuits on NISQ [13.391818915679796]
ノイズの多い中間規模量子(NISQ)デバイス上でのCNOT回路の最適化について検討する。
我々はこのアルゴリズムをIBM20や他のNISQデバイス上で実装し、その結果は他の実験方法よりも優れている。
論文 参考訳(メタデータ) (2022-10-11T06:44:04Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
畳み込みニューラルネットワーク(CNN)は、多くの分野における問題解決能力を実証している。
FPGAはCNN推論を加速する関心が高まっている。
FPGAベースのCNNアクセラレータの現在のトレンドは、複数の畳み込み層プロセッサ(CLP)を実装することである。
論文 参考訳(メタデータ) (2022-09-22T18:57:49Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
対戦相手が展開するスムーズなアルゴリズムに対して,Min-playerの新しいアルゴリズムを提案する。
本アルゴリズムは,制限周期のない単調進行を保証し,適切な勾配上昇数を求める。
論文 参考訳(メタデータ) (2021-06-02T22:03:36Z) - 3-Regular 3-XORSAT Planted Solutions Benchmark of Classical and Quantum
Heuristic Optimizers [0.30586855806896046]
特定のコンピューティング集約的な課題に対処するための選択肢として、専用ハードウェアが登場した。
これらのプラットフォームには、デジタル論理の高効率ハードウェア実装から、新しいアルゴリズムを実装するアナログハードウェアの提案まで、多くの異なる特徴がある。
本研究では、解を効率的に見つけることができる線形方程式の特定のクラスの写像を用いて、これらの異なるアプローチのいくつかをベンチマークする。
論文 参考訳(メタデータ) (2021-03-15T15:40:00Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。