論文の概要: Conditional Variational Diffusion Models
- arxiv url: http://arxiv.org/abs/2312.02246v2
- Date: Mon, 18 Dec 2023 09:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 22:03:15.136235
- Title: Conditional Variational Diffusion Models
- Title(参考訳): 条件付き変分拡散モデル
- Authors: Gabriel della Maggiora, Luis Alberto Croquevielle, Nikita Desphande,
Harry Horsley, Thomas Heinis, Artur Yakimovich
- Abstract要約: 逆問題とは、工学と科学における重要な課題である観測からパラメータを決定することである。
本稿では,学習過程の一環として分散スケジュールを学習するための新しいアプローチを提案する。
提案手法は,データに対する確率的条件付けをサポートし,高品質なソリューションを提供し,柔軟性があり,最小限のオーバーヘッドで異なるアプリケーションに適応できることを示す。
- 参考スコア(独自算出の注目度): 1.959262458711917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse problems aim to determine parameters from observations, a crucial
task in engineering and science. Lately, generative models, especially
diffusion models, have gained popularity in this area for their ability to
produce realistic solutions and their good mathematical properties. Despite
their success, an important drawback of diffusion models is their sensitivity
to the choice of variance schedule, which controls the dynamics of the
diffusion process. Fine-tuning this schedule for specific applications is
crucial but time-costly and does not guarantee an optimal result. We propose a
novel approach for learning the schedule as part of the training process. Our
method supports probabilistic conditioning on data, provides high-quality
solutions, and is flexible, proving able to adapt to different applications
with minimum overhead. This approach is tested in two unrelated inverse
problems: super-resolution microscopy and quantitative phase imaging, yielding
comparable or superior results to previous methods and fine-tuned diffusion
models. We conclude that fine-tuning the schedule by experimentation should be
avoided because it can be learned during training in a stable way that yields
better results.
- Abstract(参考訳): 逆問題とは、工学と科学における重要な課題である観測からパラメータを決定することである。
近年、生成モデル、特に拡散モデルがこの領域で、現実的な解と優れた数学的性質を生み出す能力で人気を集めている。
拡散モデルの成功にもかかわらず、拡散モデルの重要な欠点は拡散過程のダイナミクスを制御する分散スケジュールの選択に対する感度である。
このスケジュールを特定のアプリケーション向けに微調整することは重要だが、時間的コストがかかり、最適な結果が保証されない。
トレーニングプロセスの一環として,スケジュール学習のための新しい手法を提案する。
提案手法は,データに対する確率的条件付けをサポートし,高品質なソリューションを提供し,柔軟性があり,最小限のオーバーヘッドで異なるアプリケーションに適応できることを示す。
このアプローチは、超解像顕微鏡と定量的位相イメージングという2つの非関係の逆問題で検証され、従来の手法と同等あるいは優れた結果が得られる。
実験によるスケジュールの微調整は、よりよい結果をもたらす安定した方法でトレーニング中に学習できるため、避けるべきである。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
提案手法は,報酬関数やモデル再学習を介さずに,推論時の復調過程を導出するための最適化手法である。
提案手法は,高報酬に対応する領域の密度を最適化することにより,雑音分布の制御を行う。
我々の知る限り、提案手法は拡散モデルに対する最初の推論時間、バックプロパゲーションフリーな選好アライメント法である。
論文 参考訳(メタデータ) (2024-10-08T07:33:49Z) - A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
本稿では, 事前学習した拡散モデルを用いて, さらなる学習を必要とせず, 逆問題の解法について概説する。
逆問題に対する潜伏拡散モデルの使用に伴う具体的な課題と潜在的な解決策について論じる。
論文 参考訳(メタデータ) (2024-09-30T17:34:01Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Learning Diffusion Priors from Observations by Expectation Maximization [6.224769485481242]
不完全および雑音のみから拡散モデルをトレーニングするための予測最大化アルゴリズムに基づく新しい手法を提案する。
提案手法は,非条件拡散モデルに対する改良された後続サンプリング方式の提案と動機付けである。
論文 参考訳(メタデータ) (2024-05-22T15:04:06Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - Structural Pruning for Diffusion Models [65.02607075556742]
Diff-Pruningは、既存のものから軽量拡散モデルの学習に適した効率的な圧縮手法である。
複数のデータセットにまたがって実施した経験的評価は,提案手法の2つの利点を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-18T12:38:21Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。