論文の概要: Revisiting Topic-Guided Language Models
- arxiv url: http://arxiv.org/abs/2312.02331v1
- Date: Mon, 4 Dec 2023 20:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 17:38:17.877210
- Title: Revisiting Topic-Guided Language Models
- Title(参考訳): トピックガイド言語モデルの再検討
- Authors: Carolina Zheng, Keyon Vafa, David M. Blei
- Abstract要約: 4つのトピック誘導言語モデルと2つのベースラインについて検討し、4つのコーパス上で各モデルの保留予測性能を評価する。
これらの手法はいずれも標準のLSTM言語モデルのベースラインを上回りません。
- 参考スコア(独自算出の注目度): 20.21486464604549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent line of work in natural language processing has aimed to combine
language models and topic models. These topic-guided language models augment
neural language models with topic models, unsupervised learning methods that
can discover document-level patterns of word use. This paper compares the
effectiveness of these methods in a standardized setting. We study four
topic-guided language models and two baselines, evaluating the held-out
predictive performance of each model on four corpora. Surprisingly, we find
that none of these methods outperform a standard LSTM language model baseline,
and most fail to learn good topics. Further, we train a probe of the neural
language model that shows that the baseline's hidden states already encode
topic information. We make public all code used for this study.
- Abstract(参考訳): 自然言語処理における最近の研究は、言語モデルとトピックモデルを組み合わせることを目的としている。
これらのトピック誘導型言語モデルは、言語モデルにトピックモデルを追加し、文書レベルの単語使用パターンを発見できる教師なし学習手法を提供する。
本稿では,これらの手法の有効性を標準化した環境で比較する。
4つのトピックガイド言語モデルと2つのベースラインを調査し,4つのコーパス上で各モデルの保持された予測性能を評価した。
驚いたことに、これらのメソッドは標準のLSTM言語モデルベースラインを上回っておらず、ほとんどの場合良いトピックを学習できません。
さらに、ベースラインの隠れた状態が既にトピック情報をエンコードしていることを示す、ニューラルネットワークモデルのプローブをトレーニングする。
この研究に使われたすべてのコードを公開します。
関連論文リスト
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Wave to Syntax: Probing spoken language models for syntax [16.643072915927313]
音声言語の自己教師型および視覚的基盤モデルにおける構文の符号化に着目する。
我々は、構文がネットワークの中間層で最も顕著に捉えられ、より多くのパラメータを持つモデルでより明確に表現されていることを示す。
論文 参考訳(メタデータ) (2023-05-30T11:43:18Z) - FineDeb: A Debiasing Framework for Language Models [3.7698299781999376]
言語モデルのための2相脱バイアスフレームワークであるFineDebを提案する。
以上の結果から,FinDebは他の方法と比較してデバイアスが強いことが示唆された。
我々のフレームワークは、複数のクラスを持つ人口層に対して一般化可能である。
論文 参考訳(メタデータ) (2023-02-05T18:35:21Z) - Accidental Learners: Spoken Language Identification in Multilingual
Self-Supervised Models [11.439430077017635]
事前学習された音声モデルは,下位層における言語識別情報を最適に符号化する。
これらの層から得られる埋め込みは、目に見えない言語を分類するのに非常に堅牢であることを示す。
NVIDIA NeMoツールキットを通じてモデルをオープンソースにしています。
論文 参考訳(メタデータ) (2022-11-09T18:53:59Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Integrating Linguistic Theory and Neural Language Models [2.870517198186329]
理論的言語学とニューラル言語モデルが相互にどのように関係しているかを説明するためのケーススタディをいくつか提示する。
この論文は、言語モデルにおける構文意味インタフェースの異なる側面を探求する3つの研究に貢献する。
論文 参考訳(メタデータ) (2022-07-20T04:20:46Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
言語知識はシーンのテキスト認識に非常に有益である。
エンドツーエンドのディープネットワークで言語規則を効果的にモデル化する方法はまだ研究の課題です。
シーンテキスト認識のための自律的双方向反復型ABINetを提案する。
論文 参考訳(メタデータ) (2021-03-11T06:47:45Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Learning Spoken Language Representations with Neural Lattice Language
Modeling [39.50831917042577]
本稿では,音声言語理解タスクのための文脈表現を提供するために,ニューラルネットワーク言語モデルを訓練するフレームワークを提案する。
提案する2段階事前学習手法は,音声データの要求を低減し,効率を向上する。
論文 参考訳(メタデータ) (2020-07-06T10:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。