論文の概要: MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography
- arxiv url: http://arxiv.org/abs/2312.02365v2
- Date: Mon, 25 Mar 2024 23:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 22:23:06.332777
- Title: MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography
- Title(参考訳): MEDPSeg:階層型多型マルチタスク学習による断層ガラス不透明度のセグメンテーション, 凝縮, 肺構造物のCTによる解析
- Authors: Diedre S. Carmo, Jean A. Ribeiro, Alejandro P. Comellas, Joseph M. Reinhardt, Sarah E. Gerard, Letícia Rittner, Roberto A. Lotufo,
- Abstract要約: MEDPSegは階層型多形マルチタスク学習(HPML)を通して異種胸部CTターゲットから学習する
本稿では,GGOと統合セグメンテーションタスクの最先端性能を実現するPMLについて述べる。
さらに、MEDPSegは肺発作、気道、肺動脈、肺病変の分節を同時に行う。
- 参考スコア(独自算出の注目度): 37.119000111386924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic response highlighted the potential of deep learning methods in facilitating the diagnosis, prognosis and understanding of lung diseases through automated segmentation of pulmonary structures and lesions in chest computed tomography (CT). Automated separation of lung lesion into ground-glass opacity (GGO) and consolidation is hindered due to the labor-intensive and subjective nature of this task, resulting in scarce availability of ground truth for supervised learning. To tackle this problem, we propose MEDPSeg. MEDPSeg learns from heterogeneous chest CT targets through hierarchical polymorphic multitask learning (HPML). HPML explores the hierarchical nature of GGO and consolidation, lung lesions, and the lungs, with further benefits achieved through multitasking airway and pulmonary artery segmentation. Over 6000 volumetric CT scans from different partially labeled sources were used for training and testing. Experiments show PML enabling new state-of-the-art performance for GGO and consolidation segmentation tasks. In addition, MEDPSeg simultaneously performs segmentation of the lung parenchyma, airways, pulmonary artery, and lung lesions, all in a single forward prediction, with performance comparable to state-of-the-art methods specialized in each of those targets. Finally, we provide an open-source implementation with a graphical user interface at https://github.com/MICLab-Unicamp/medpseg.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミック対応は、胸部CT(Central Computed Tomography)における肺構造と病変の自動分離による肺疾患の診断、予後、理解を促進するためのディープラーニング手法の可能性を強調した。
肺病変をGGO(グラウンドグラス不透明度)に自動分離し,この課題の労働集約的,主観的特性により結束を阻害し,教師付き学習のためのグラウンド真実の入手が困難となる。
この問題に対処するため,我々はMEDPSegを提案する。
MEDPSegは階層型多形マルチタスク学習(HPML)を通じて異種胸部CTから学習する。
HPMLは、GGOの階層的性質と統合、肺病変、肺を探索し、マルチタスク気道と肺動脈の分節化によってさらなる利益を得る。
異なるラベル付きソースから6000以上のCTスキャンをトレーニングとテストに使用した。
実験では、GGOと統合セグメンテーションタスクのための新しい最先端パフォーマンスを実現するPMLが示されている。
さらに、MEDPSegは同時に肺発作、気道、肺動脈、肺病変のセグメンテーションを行い、それぞれに特有の最先端の手法に匹敵するパフォーマンスで、単一の前方予測を行う。
最後に、私たちは、https://github.com/MICLab-Unicamp/medpseg.comでグラフィカルなユーザーインターフェースを備えたオープンソース実装を提供しています。
関連論文リスト
- Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSegは胸部CT画像における肺病変の正確な分画のための深層学習に基づくアプローチである。
S-MEDSegは、トレーニング済みのEfficientNetバックボーン、双方向機能ピラミッドネットワーク、モダンネットワークの進化を組み合わせたものだ。
論文 参考訳(メタデータ) (2023-10-13T23:42:43Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network
with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [6.266053305874546]
マルチエンコーダをベースとした自己適応型ハードアテンションネットワーク(MESAHA-Net)をCTスキャンの高精度な肺結節分割のための効率的なエンドツーエンドフレームワークとして提案する。
MESAHA-Netは、肺結節のスライス・バイ・スライス2Dセグメンテーションを反復的に行い、各スライス内の結節領域に着目して肺結節の3Dセグメンテーションを生成する。
LIDC-IDRIデータセットは,肺結節セグメンテーションのための最大公用データセットである。
論文 参考訳(メタデータ) (2023-04-04T07:05:15Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
肺がんは世界中でがんの死因となっている。
現在の肺結節検出法は通常ドメイン固有である。
肺結節検出ネットワークの一般化能力を高めるために,スライスグループドメインアテンション(SGDA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-03-07T03:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
本研究の目的は, 各種密度増強肺異常に対して頑健な完全自動セグメンテーションアルゴリズムを開発することである。
急性肺障害を患うヒトの左肺と右肺に特異的にラベル付けされた肺と非特異的にラベル付けされた肺の両方を1つのニューラルネットワークのトレーニングに組み込んだ多形性訓練手法が提案されている。
結果として生じるネットワークは、ヒトの左右の肺領域を、びまん性オパーシフィケーションと凝縮を伴わずに予測することを目的としている。
論文 参考訳(メタデータ) (2020-10-16T18:25:59Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。