論文の概要: Flexible Communication for Optimal Distributed Learning over
Unpredictable Networks
- arxiv url: http://arxiv.org/abs/2312.02493v2
- Date: Mon, 29 Jan 2024 18:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 21:11:06.085139
- Title: Flexible Communication for Optimal Distributed Learning over
Unpredictable Networks
- Title(参考訳): 予測不能ネットワーク上での最適分散学習のためのフレキシブル通信
- Authors: Sahil Tyagi, Martin Swany
- Abstract要約: 高圧縮比(CR)のトレーニングは、DenseSGDのように高い精度を達成するが、通信コストが高いため、並列スケーリングが低い。
帯域幅に最適化されたAR互換のTopk圧縮機を提案し,特定のネットワーク構成におけるAllgather(AG)よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient compression alleviates expensive communication in distributed deep
learning by sending fewer values and its corresponding indices, typically via
Allgather (AG). Training with high compression ratio (CR) achieves high
accuracy like DenseSGD, but has lower parallel scaling due to high
communication cost (i.e., parallel efficiency). Using lower CRs improves
parallel efficiency by lowering synchronization cost, but degrades model
accuracy as well (statistical efficiency). Further, speedup attained with
different models and CRs also varies with network latency, effective bandwidth
and collective op used for aggregation. In many cases, collectives like
Allreduce (AR) have lower cost than AG to exchange the same amount of data. In
this paper, we propose an AR-compatible Topk compressor that is
bandwidth-optimal and thus performs better than AG in certain network
configurations. We develop a flexible communication strategy that switches
between AG and AR based on which collective is optimal in the current settings,
and model the pareto-relationship between parallel and statistical efficiency
as a multi-objective optimization (MOO) problem to dynamically adjust CR and
accelerate training while still converging to high accuracy.
- Abstract(参考訳): グラディエント圧縮は、通常Allgather (AG)を介して、より少ない値とその対応するインデックスを送信することによって、分散ディープラーニングにおける高価な通信を緩和する。
高圧縮率(cr)トレーニングは、高密度sgdのような高い精度を実現するが、通信コスト(すなわち、並列効率)が高いため、並列スケーリングが低くなる。
低いcrsを使用すると同期コストを下げることで並列効率が向上するが、モデルの精度も低下する(統計的効率)。
さらに、異なるモデルとCRで達成されるスピードアップは、ネットワークレイテンシ、効果的な帯域幅、集約に使用される集合オプトによっても異なる。
多くの場合、Allreduce(AR)のような集団は同じ量のデータを交換するAGよりもコストが低い。
本稿では,帯域幅を最適化し,特定のネットワーク構成においてagよりも優れた性能を持つar互換のtopk圧縮機を提案する。
我々は,agとarの間を,現在の状況において最適である集団に基づいて切り替えるフレキシブルな通信戦略を開発し,並列と統計効率のパレート関係を多目的最適化(moo)問題としてモデル化し,crを動的に調整し,高い精度を保ちながらトレーニングを加速する。
関連論文リスト
- Heterogeneity-Aware Cooperative Federated Edge Learning with Adaptive Computation and Communication Compression [7.643645513353701]
クラウドベースのフェデレーション・ラーニング(FL)の欠点により、モバイルエッジネットワーク上でのFLの効率を改善するために、協調フェデレーション・エッジ・ラーニング(CFEL)が提案されている。
CFELは、動的および不均一なデバイス特性から生じる重要な課題に直面し、収束を遅くし、リソース消費を増加させる。
本稿では、トレーニング時間とエネルギー消費を最小化し、モデル精度を最大化することを目的とした、textitHeterogeneity-Aware Cooperative Edge-based Federated Averaging (HCEF)と呼ばれる不均一性を考慮したCFEL方式を提案する。
論文 参考訳(メタデータ) (2024-09-06T04:26:57Z) - Bandwidth-Aware and Overlap-Weighted Compression for Communication-Efficient Federated Learning [29.727339562140653]
フェデレーション平均化(FedAvg)におけるスパシフィケーションなどの現在のデータ圧縮手法は、フェデレーション学習(FL)のコミュニケーション効率を効果的に向上させる。
これらの手法は、異種帯域幅と非IIDデータによるストラグラー問題やモデル性能の低下といった課題に直面する。
非IIDデータに関連する問題を軽減しつつ,通信効率の向上を目的としたFLのための帯域幅対応圧縮フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T02:28:27Z) - LoCo: Low-Bit Communication Adaptor for Large-scale Model Training [63.040522637816906]
低ビット通信は、しばしば圧縮情報損失によってトレーニング品質が低下する。
本稿では,ローカルGPUノードを補償するLoCo(Lo-bit Communication Adaptor)を提案する。
実験結果から,Megatron-LMやPyTorchs FSDPといった大規模トレーニングモデルフレームワークの移動により,LoCoは圧縮通信効率を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-07-05T13:01:36Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
有効指標としてAUPRC(Area Under Precision-Recall)を導入した。
サーバーレスのマルチパーティ共同トレーニングは、サーバーノードのボトルネックを避けることで通信コストを削減できる。
本稿では,AUPRCを直接最適化する ServerLess biAsed sTochastic gradiEnt (SLATE) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-06T06:51:32Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning [23.05003652536773]
Federated Edge Learning(FEEL)は、エッジインテリジェンスアプリケーションを駆動するための有望な分散機械学習(ML)フレームワークである。
通信効率の高いFEELのためのハイブリッドアグリゲーション(TCS-H)を用いた時間相関スペーシングを提案する。
論文 参考訳(メタデータ) (2022-02-17T02:48:07Z) - Adaptive Periodic Averaging: A Practical Approach to Reducing
Communication in Distributed Learning [6.370766463380455]
コンバージェンスと通信コストの観点からは,最適平均化期間は一定ではなく,実行過程によって異なることを示す。
本稿では,SGD (ADPSGD) を平均化する適応周期パラメータ (Adaptive Periodic parameter) という実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T00:04:55Z) - Breaking (Global) Barriers in Parallel Stochastic Optimization with
Wait-Avoiding Group Averaging [34.55741812648229]
本稿では、ウェイトアビジングサブグループであるWAGMA-SGDについて述べる。
ImageNet上でResNet-50をトレーニングし、機械翻訳用のトランスフォーマー、大規模ナビゲーションのための深い強化学習を行う。
最先端の分散SGDと比較すると、WAGMA-SGDはトレーニングのスループットを大幅に改善する。
論文 参考訳(メタデータ) (2020-04-30T22:11:53Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。