A Unified Simulation Framework for Visual and Behavioral Fidelity in
Crowd Analysis
- URL: http://arxiv.org/abs/2312.02613v1
- Date: Tue, 5 Dec 2023 09:43:27 GMT
- Title: A Unified Simulation Framework for Visual and Behavioral Fidelity in
Crowd Analysis
- Authors: Niccol\`o Bisagno, Nicola Garau, Antonio Luigi Stefani, and Nicola
Conci
- Abstract summary: We present a human crowd simulator, called UniCrowd, and its associated validation pipeline.
We show how the simulator can generate annotated data, suitable for computer vision tasks, in particular for detection and segmentation, as well as the related applications, as crowd counting, human pose estimation, trajectory analysis and prediction, and anomaly detection.
- Score: 6.460475042590685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation is a powerful tool to easily generate annotated data, and a highly
desirable feature, especially in those domains where learning models need large
training datasets. Machine learning and deep learning solutions, have proven to
be extremely data-hungry and sometimes, the available real-world data are not
sufficient to effectively model the given task. Despite the initial skepticism
of a portion of the scientific community, the potential of simulation has been
largely confirmed in many application areas, and the recent developments in
terms of rendering and virtualization engines, have shown a good ability also
in representing complex scenes. This includes environmental factors, such as
weather conditions and surface reflectance, as well as human-related events,
like human actions and behaviors. We present a human crowd simulator, called
UniCrowd, and its associated validation pipeline. We show how the simulator can
generate annotated data, suitable for computer vision tasks, in particular for
detection and segmentation, as well as the related applications, as crowd
counting, human pose estimation, trajectory analysis and prediction, and
anomaly detection.
Related papers
- MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators [4.5353840616537555]
Graph Network Simulators (GNS) have emerged as the leading method for modeling physical phenomena.
We have constructed a high-quality physical simulation dataset encompassing 1D, 2D, and 3D scenes.
A key feature of our dataset is the inclusion of precise multi-body dynamics, facilitating a more realistic simulation of the physical world.
arXiv Detail & Related papers (2024-10-04T03:03:06Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
We provide an overview of challenges with regard to different aspects and types of simulation.
We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation.
Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
arXiv Detail & Related papers (2023-05-23T11:39:23Z) - Development of a Realistic Crowd Simulation Environment for Fine-grained
Validation of People Tracking Methods [0.7223361655030193]
This work develops an extension of crowd simulation (named CrowdSim2) and prove its usability in the application of people-tracking algorithms.
The simulator is developed using the very popular Unity 3D engine with particular emphasis on the aspects of realism in the environment.
Three methods of tracking were used to validate generated dataset: IOU-Tracker, Deep-Sort, and Deep-TAMA.
arXiv Detail & Related papers (2023-04-26T09:29:58Z) - Grounding Graph Network Simulators using Physical Sensor Observations [12.017054986629846]
We integrate sensory information to ground Graph Network Simulators on real world observations.
We predict the mesh state of deformable objects by utilizing point cloud data.
arXiv Detail & Related papers (2023-02-23T09:06:42Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
This paper addresses the task of extracting meaningful results in an automated manner from high dimensional data sets.
We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data.
We compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches.
arXiv Detail & Related papers (2021-03-11T09:28:00Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.