論文の概要: Diffusion Noise Feature: Accurate and Fast Generated Image Detection
- arxiv url: http://arxiv.org/abs/2312.02625v3
- Date: Tue, 19 Aug 2025 02:29:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.275536
- Title: Diffusion Noise Feature: Accurate and Fast Generated Image Detection
- Title(参考訳): 拡散雑音の特徴:高精度かつ高速な画像検出
- Authors: Yichi Zhang, Xiaogang Xu,
- Abstract要約: 拡散雑音特徴(DNF)という新しい表現を提案する。
DNFは、人工的生成の指紋として機能する微妙で高周波のアーティファクトを増幅する。
提案手法は, 生成画像の検出において, 顕著な精度, 堅牢性, 一般化を実現する。
- 参考スコア(独自算出の注目度): 23.923353960316618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models now produce images with such stunning realism that they can easily deceive the human eye. While this progress unlocks vast creative potential, it also presents significant risks, such as the spread of misinformation. Consequently, detecting generated images has become a critical research challenge. However, current detection methods are often plagued by low accuracy and poor generalization. In this paper, to address these limitations and enhance the detection of generated images, we propose a novel representation, Diffusion Noise Feature (DNF). Derived from the inverse process of diffusion models, DNF effectively amplifies the subtle, high-frequency artifacts that act as fingerprints of artificial generation. Our key insight is that real and generated images exhibit distinct DNF signatures, providing a robust basis for differentiation. By training a simple classifier such as ResNet-50 on DNF, our approach achieves remarkable accuracy, robustness, and generalization in detecting generated images, including those from unseen generators or with novel content. Extensive experiments across four training datasets and five test sets confirm that DNF establishes a new state-of-the-art in generated image detection. The code is available at https://github.com/YichiCS/Diffusion-Noise-Feature.
- Abstract(参考訳): 生成モデルは、人間の目を簡単に騙すことができるような驚くべきリアリズムを持つ画像を生成する。
この進歩は、膨大な創造的可能性を解き放つ一方で、誤報の拡散など、重大なリスクも生み出す。
これにより、生成した画像を検出することが重要な研究課題となっている。
しかし、現在の検出法は、しばしば低い精度と低い一般化によって悩まされる。
本稿では,これらの制約に対処し,生成した画像の検出を向上させるために,新しい表現である拡散雑音特徴(DNF)を提案する。
拡散モデルの逆過程から派生したDNFは、人工生成の指紋として機能する微妙で高周波な人工物を効果的に増幅する。
我々の重要な洞察は、実画像と生成された画像は異なるDNFシグネチャを示し、差別化のための堅牢な基盤を提供するということである。
DNF上でResNet-50のような単純な分類器を訓練することにより、未知のジェネレータや新しいコンテンツを含む生成画像の検出において、顕著な精度、堅牢性、一般化を実現する。
4つのトレーニングデータセットと5つのテストセットにわたる大規模な実験により、DNFが生成した画像検出において新たな最先端技術を確立することが確認された。
コードはhttps://github.com/YichiCS/Diffusion-Noise-Featureで公開されている。
関連論文リスト
- DNF-Intrinsic: Deterministic Noise-Free Diffusion for Indoor Inverse Rendering [46.94209097951204]
本稿では,DNF-Intrinsicについて述べる。
提案手法は,既存の最先端レンダリング手法よりも明らかに優れていることを示す。
論文 参考訳(メタデータ) (2025-07-05T07:11:58Z) - LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection [11.700935740718675]
LATTE(Latent Trajectory Embedding)は、遅延埋め込みの進化をいくつかの遅延時間ステップでモデル化する、新しいアプローチである。
単一ステップエラーではなく、そのような埋め込みの軌跡をモデル化することにより、LATTEは、生成した画像と実を区別する微妙で差別的なパターンをキャプチャする。
論文 参考訳(メタデータ) (2025-07-03T12:53:47Z) - Explainable Synthetic Image Detection through Diffusion Timestep Ensembling [30.298198387824275]
近年の拡散モデルの発展により、知覚的な実画像の作成が可能になった。
拡散モデルの最近の進歩により、知覚的にリアルな画像の作成が可能となり、誤用された場合に重大なセキュリティリスクが生じる。
論文 参考訳(メタデータ) (2025-03-08T13:04:20Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
本研究では,事前学習した拡散モデルから,トレーニング画像サイズよりもはるかに高解像度で画像を生成する能力について検討する。
注意ベースや共同拡散アプローチのような、高分解能な生成のための既存の研究は、これらの問題にうまく対処できない。
本稿では,推論中の畳み込み知覚場を動的に調整できる簡易かつ効果的な再拡張法を提案する。
論文 参考訳(メタデータ) (2023-10-11T17:52:39Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
拡散再構成誤り(DIRE)という新しい表現を提案する。
DIREは、予め訓練された拡散モデルにより、入力画像とその再構成画像間の誤差を測定する。
DIREは生成されたイメージと実際のイメージを区別するためのブリッジとして機能する、というヒントを提供する。
論文 参考訳(メタデータ) (2023-03-16T13:15:03Z) - Detecting Images Generated by Diffusers [12.986394431694206]
MSCOCOとWikimediaのデータセットのキャプションから生成された画像は、安定拡散とGLIDEの2つの最先端モデルを用いて検討する。
実験の結果, 単純なマルチ層パーセプトロンを用いて生成した画像を検出することができることがわかった。
関連したテキスト情報を画像に組み込むと、検出結果が大幅に改善されることは滅多にない。
論文 参考訳(メタデータ) (2023-03-09T14:14:29Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Spectral Distribution Aware Image Generation [11.295032417617456]
フォトリアリスティック画像の深部生成モデルは、人間の目で実際の画像と容易に区別できない。
スペクトル判別器を用いて実データの周波数分布に応じて画像を生成することを提案する。
この結果から,実際の周波数スペクトルによる画像生成がより容易であり,検出が困難であることが示唆された。
論文 参考訳(メタデータ) (2020-12-05T19:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。