Realistic simulation of quantum computation using unitary and
measurement channels
- URL: http://arxiv.org/abs/2005.06337v1
- Date: Wed, 13 May 2020 14:29:18 GMT
- Title: Realistic simulation of quantum computation using unitary and
measurement channels
- Authors: Ahmed Abid Moueddene and Nader Khammassi and Koen Bertels and Carmen
G. Almudever
- Abstract summary: We introduce a new simulation approach that relies on approximating the density matrix evolution by a sum of unitary and measurement channels.
This model shows an improvement of at least one order of magnitude in terms of accuracy compared to the best known approaches.
- Score: 1.406995367117218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation and practicality of quantum algorithms highly hinge on the
quality of operations within a quantum processor. Therefore, including
realistic error models in quantum computing simulation platforms is crucial for
testing these algorithms. Existing classical simulation techniques of quantum
information processing devices exhibit a trade-off between scalability (number
of qubits that can be simulated) and accuracy (how close the simulation is to
the target error model). In this paper, we introduce a new simulation approach
that relies on approximating the density matrix evolution by a stochastic sum
of unitary and measurement channels within a pure state simulation environment.
This model shows an improvement of at least one order of magnitude in terms of
accuracy compared to the best known stochastic approaches while allowing to
simulate a larger number of qubits compared to the exact density matrix
simulation. Furthermore, we used this approach to realistically simulate the
Grover's algorithm and the surface code 17 using gate set tomography
characterization of quantum operations as a noise model.
Related papers
- Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques [0.0]
We conduct an in-depth analysis of the cost of simulating Abelian and non-Abelian lattice gauge theories.
We provide explicit circuit constructions, as well as T-gate counts and qubit counts for the entire simulation.
arXiv Detail & Related papers (2024-05-16T19:36:49Z) - Distributed Simulation of Statevectors and Density Matrices [0.0]
This manuscript presents a plethora of novel algorithms for distributed full-state simulation of gates, operators, noise channels and other calculations in digital quantum computers.
We show how a simple, common but seemingly restrictive distribution model actually permits a rich set of advanced facilities.
Our results are derived in language familiar to a quantum information theory audience, and our algorithms formalised for the scientific simulation community.
arXiv Detail & Related papers (2023-11-02T18:00:36Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Simulating Hamiltonian dynamics in a programmable photonic quantum
processor using linear combinations of unitary operations [4.353492002036882]
We modify the multi-product Trotterization and combine it with the oblivious amplitude amplification to simultaneously reach a high simulation precision and high success probability.
We experimentally implement the modified multi-product algorithm in an integrated-photonics programmable quantum simulator in silicon.
arXiv Detail & Related papers (2022-11-12T18:49:41Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.