LExCI: A Framework for Reinforcement Learning with Embedded Systems
- URL: http://arxiv.org/abs/2312.02739v2
- Date: Thu, 27 Jun 2024 08:48:53 GMT
- Title: LExCI: A Framework for Reinforcement Learning with Embedded Systems
- Authors: Kevin Badalian, Lucas Koch, Tobias Brinkmann, Mario Picerno, Marius Wegener, Sung-Yong Lee, Jakob Andert,
- Abstract summary: We present a framework named LExCI, which bridges the gap between RL libraries and embedded systems.
It provides a free and open-source tool for training agents on embedded systems using the open-source library RLlib.
Its operability is demonstrated with two state-of-the-art RL-algorithms and a rapid control prototyping system.
- Score: 1.8218298349840023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in artificial intelligence (AI) have led to its application in many areas of everyday life. In the context of control engineering, reinforcement learning (RL) represents a particularly promising approach as it is centred around the idea of allowing an agent to freely interact with its environment to find an optimal strategy. One of the challenges professionals face when training and deploying RL agents is that the latter often have to run on dedicated embedded devices. This could be to integrate them into an existing toolchain or to satisfy certain performance criteria like real-time constraints. Conventional RL libraries, however, cannot be easily utilised in conjunction with that kind of hardware. In this paper, we present a framework named LExCI, the Learning and Experiencing Cycle Interface, which bridges this gap and provides end-users with a free and open-source tool for training agents on embedded systems using the open-source library RLlib. Its operability is demonstrated with two state-of-the-art RL-algorithms and a rapid control prototyping system.
Related papers
- RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
We introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent.
The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks.
This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline.
arXiv Detail & Related papers (2024-02-29T16:07:22Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - OpenRL: A Unified Reinforcement Learning Framework [19.12129820612253]
We present OpenRL, an advanced reinforcement learning (RL) framework.
It is designed to accommodate a diverse array of tasks, from single-agent challenges to complex multi-agent systems.
It integrates Natural Language Processing (NLP) with RL, enabling researchers to address a combination of RL training and language-centric tasks effectively.
arXiv Detail & Related papers (2023-12-20T12:04:06Z) - Katakomba: Tools and Benchmarks for Data-Driven NetHack [52.0035089982277]
NetHack is known as the frontier of reinforcement learning research.
We argue that there are three major obstacles for adoption: resource-wise, implementation-wise, and benchmark-wise.
We develop an open-source library that provides workflow fundamentals familiar to the offline reinforcement learning community.
arXiv Detail & Related papers (2023-06-14T22:50:25Z) - RLtools: A Fast, Portable Deep Reinforcement Learning Library for
Continuous Control [8.159171440455824]
Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times.
We present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning.
arXiv Detail & Related papers (2023-06-06T09:26:43Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
In reinforcement learning (RL) research, simulations enable benchmarks between algorithms.
In this paper, we introduce Karolos, a framework developed for robotic applications.
The code is open source and published on GitHub with the aim of promoting research of RL applications in robotics.
arXiv Detail & Related papers (2022-12-01T23:14:02Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
Generation of diverse realistic scenarios is challenging for real-time strategy (RTS) environments.
Most of the existing simulators rely on randomly generating the environments.
We introduce the benefits of adopting an existing formal scenario specification language, SCENIC, to assist researchers.
arXiv Detail & Related papers (2021-06-18T21:49:46Z) - Podracer architectures for scalable Reinforcement Learning [23.369001500657028]
How to best train reinforcement learning (RL) agents at scale is still an active research area.
In this report we argue that TPUs are particularly well suited for training RL agents in a scalable, efficient and reproducible way.
arXiv Detail & Related papers (2021-04-13T15:05:35Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
Most popular reinforcement learning libraries advocate for highly modular agent composability.
We propose a versatile approach that allows the definition of RL agents at different scales through independent reusable components.
arXiv Detail & Related papers (2020-07-06T10:22:07Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.