Causal flow preserving optimisation of quantum circuits in the
ZX-calculus
- URL: http://arxiv.org/abs/2312.02793v2
- Date: Thu, 25 Jan 2024 23:02:20 GMT
- Title: Causal flow preserving optimisation of quantum circuits in the
ZX-calculus
- Authors: Calum Holker
- Abstract summary: This paper introduces an optimisation algorithm aiming to minimise non-Clifford gate count and two-qubit gate count.
By translating a circuit into a ZX-diagram it can be simplified before being extracted back into a circuit.
A particularly effective strategy for optimising QFT circuits is also noted, resulting in exactly one two-qubit gate per non-Clifford gate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimising quantum circuits to minimise resource usage is crucial, especially
with near-term hardware limited by quantum volume. This paper introduces an
optimisation algorithm aiming to minimise non-Clifford gate count and two-qubit
gate count by building on ZX-calculus-based strategies. By translating a
circuit into a ZX-diagram it can be simplified before being extracted back into
a circuit. We assert that simplifications preserve a graph-theoretic property
called causal flow. This has the advantage that qubit lines are well defined
throughout, permitting a trivial extraction procedure and in turn enabling the
calculation of an individual transformation's impact on the resulting circuit.
A general procedure for a decision strategy is introduced, inspired by an
existing heuristic based method. Both phase teleportation and the neighbour
unfusion rule are generalised. In particular, allowing unfusion of multiple
neighbours is shown to lead to significant improvements in optimisation. When
run on a set of benchmark circuits, the algorithm developed reduces the
two-qubit gate count by an average of 19.8%, beating both the previous best
ZX-based strategy (14.6%) and non-ZX strategy (18.5%) at the time of
publication. This lays a foundation for multiple avenues of improvement. A
particularly effective strategy for optimising QFT circuits is also noted,
resulting in exactly one two-qubit gate per non-Clifford gate.
Related papers
- Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
We present the parallelization of pre-calibrated pulses at the hardware level as an easy-to-implement strategy to optimize quantum gates.
We show that such parallelization leads to improved fidelity and gate time reduction, when compared to serial concatenation.
arXiv Detail & Related papers (2023-12-20T19:00:02Z) - Reinforcement Learning Based Quantum Circuit Optimization via ZX-Calculus [0.0]
We propose a novel Reinforcement Learning (RL) method for optimizing quantum circuits using graph-theoretic simplification rules of ZX-diagrams.
We demonstrate the capacity of our approach by comparing it against the best performing ZX-Calculus-based algorithm for the problem in hand.
Our approach is ready to be used as a valuable tool for the implementation of quantum algorithms in the near-term intermediate-scale range (NISQ)
arXiv Detail & Related papers (2023-12-18T17:59:43Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Vanishing 2-Qubit Gates with Non-Simplification ZX-Rules [1.0089382889894247]
A quantum circuit can be translated to a ZX-diagram which can be simplified using the rules of the ZX-calculus.
The best-known extraction procedures can drastically increase the number of 2-qubit gates.
We take advantage of the fact that local changes in a ZX-diagram can drastically affect the complexity of the extracted circuit.
arXiv Detail & Related papers (2022-09-14T18:43:21Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
The flexibility in reordering the two-qubit gates allows compiler optimizations to generate circuits with better depths, gate count, and fidelity.
We propose a structured method that ensures linear depth for any compiled QAOA circuit on multi-dimensional quantum architectures.
Overall, we can compile a circuit with up to 1024 qubits in 10 seconds with a 3.8X speedup in depth, 17% reduction in gate count, and 18X improvement for circuit ESP.
arXiv Detail & Related papers (2021-12-12T04:00:45Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Hybrid quantum-classical circuit simplification with the ZX-calculus [0.0]
This work uses an extension of the formal graphical ZX-calculus called ZX-ground as an intermediary representation of the hybrid circuits.
We derive a number of gFlow-preserving optimization rules for ZX-ground diagrams that reduce the size of the graph.
We present a general procedure for detecting segments of circuit-like ZX-ground diagrams which can be implemented with classical gates in the extracted circuit.
arXiv Detail & Related papers (2021-09-13T15:45:56Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.