Time periodicity from randomness in quantum systems
- URL: http://arxiv.org/abs/2104.13402v1
- Date: Tue, 27 Apr 2021 18:02:31 GMT
- Title: Time periodicity from randomness in quantum systems
- Authors: Giacomo Guarnieri, Mark T. Mitchison, Archak Purkayastha, Dieter
Jaksch, Berislav Bu\v{c}a, John Goold
- Abstract summary: Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many complex systems can spontaneously oscillate under non-periodic forcing.
Such self-oscillators are commonplace in biological and technological
assemblies where temporal periodicity is needed, such as the beating of a human
heart or the vibration of a cello string. While self-oscillation is well
understood in classical non-linear systems and their quantized counterparts,
the spontaneous emergence of periodicity in quantum systems without a
semi-classical limit is more elusive. Here, we show that this behavior can
emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation
due to sequential coupling with auxiliary systems at random times. We develop
dynamical symmetry conditions that guarantee an oscillatory long-time state in
this setting. Our rigorous results are illustrated with specific spin models,
which could be implemented in trapped-ion quantum simulators.
Related papers
- Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Megastable quantization in self-excited systems [0.0]
A classical particle in a confining potential gives rise to a Hamiltonian conservative dynamical system.
The corresponding quantum particle exhibits countably infinite discrete energy levels.
Our formalism can be extended to self-excited particles in general confining potentials.
arXiv Detail & Related papers (2024-06-06T09:40:57Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs [0.0]
We study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians.
We show that statistical pseudo-randomness can already be achieved by a quantum system driven with a single frequency.
arXiv Detail & Related papers (2024-02-09T19:00:00Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Discrete time-crystalline order enabled by quantum many-body scars:
entanglement steering via periodic driving [0.0]
We show that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving.
Our results suggest a route to controlling entanglement in quantum systems by combining periodic driving with many-body scars.
arXiv Detail & Related papers (2021-02-25T20:41:47Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.