Decoherence of Quantum Emitters in hexagonal Boron Nitride
- URL: http://arxiv.org/abs/2410.16681v1
- Date: Tue, 22 Oct 2024 04:25:35 GMT
- Title: Decoherence of Quantum Emitters in hexagonal Boron Nitride
- Authors: Jake Horder, Dominic Scognamiglio, Nathan Coste, Angus Gale, Kenji Watanabe, Takashi Taniguchi, Mehran Kianinia, Milos Toth, Igor Aharonovich,
- Abstract summary: Coherent quantum emitters are a central resource for advanced quantum technologies.
Here, we demonstrate that hBN processes can degrade the coherence, and hence the functionality, of quantum emitters in hBN.
We highlight the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN.
- Score: 0.17413461132662073
- License:
- Abstract: Coherent quantum emitters are a central resource for advanced quantum technologies. Hexagonal boron nitride (hBN) hosts a range of quantum emitters that can be engineered using techniques such as high-temperature annealing, optical doping, and irradiation with electrons or ions. Here, we demonstrate that such processes can degrade the coherence, and hence the functionality, of quantum emitters in hBN. Specifically, we show that hBN annealing and doping methods that are used routinely in hBN nanofabrication protocols give rise to decoherence of B-center quantum emitters. The decoherence is characterized in detail, and attributed to defects that act as charge traps which fluctuate electrostatically during SPE excitation and induce spectral diffusion. The decoherence is minimal when the emitters are engineered by electron beam irradiation of as-grown, pristine flakes of hBN, where B-center linewidths approach the lifetime limit needed for quantum applications involving interference and entanglement. Our work highlights the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN, despite the common perception that the hBN lattice and hBN SPEs are highly-stable and resilient against chemical and thermal degradation. It underscores the need for nanofabrication techniques that are minimally invasive and avoid crystal damage when engineering hBN SPEs and devices for quantum-coherent technologies.
Related papers
- Quantum Efficiency the B-centre in hexagonal boron nitride [0.0]
B-centres in hexagonal boron nitride (hBN) are gaining significant research interest for quantum photonics applications.
Here, we leverage the layered nature of hBN to directly measure the quantum efficiency (QE) of single B-centres.
Results indicate that B-centres located in thin flakes can exhibit QEs higher than 40%.
arXiv Detail & Related papers (2024-08-12T08:49:03Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Near-coherent quantum emitters in hexagonal boron nitride with discrete polarization axes [0.0]
Hexagonal boron nitride (hBN) has recently gained attention as a solid state host of quantum emitters.
Here we employ spectral hole burning spectroscopy and resonant polarization measurements to observe nearly-coherent hBN quantum emitters.
arXiv Detail & Related papers (2024-02-19T02:28:06Z) - Comparative study of quantum emitter fabrication in wide bandgap
materials using localized electron irradiation [33.18585053467985]
Quantum light sources are crucial foundational components for various quantum technology applications.
With the rapid development of quantum technology, there has been a growing demand for materials with the capability of hosting quantum emitters.
One such material platform uses fluorescent defects in hexagonal boron nitride (hBN) that can host deep sublevels within the bandgap.
The localized electron irradiation has shown its effectiveness in generating deep sublevels to induce single emitters in hBN.
arXiv Detail & Related papers (2023-12-05T16:12:37Z) - Deterministic fabrication of blue quantum emitters in hexagonal boron
nitride [3.261706723536935]
We present a robust, deterministic electron beam technique for site-specific fabrication of blue quantum emitters with a zero-phonon line at 436 nm (2.8 eV)
We show that the emission intensity is proportional to electron dose and that the efficacy of the fabrication method correlates with a defect emission at 305 nm (4.1 eV)
Our results provide important insights into photophysical properties and structure of defects in hBN and a framework for deterministic fabrication of quantum emitters in hBN.
arXiv Detail & Related papers (2021-11-26T11:51:12Z) - Electrical Control of Quantum Emitters in a Van der Waals
Heterostructure [2.239998253134085]
We show an approach to electrically modulate quantum emitters in n hBN graphene van der Waals heterostructure.
Notably, a significant number of quantum emitters are intrinsically dark, and become optically active at non-zero voltages.
Our results enhance the potential of hBN for tuneable solid state quantum emitters for the growing field of quantum information science.
arXiv Detail & Related papers (2021-11-04T11:03:53Z) - Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically
on Chip-Compatible Substrates [51.112488102081734]
Two-dimensional hexagonal boron nitride (hBN) hosts bright room-temperature single-photon emitters (SPEs)
Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip.
arXiv Detail & Related papers (2021-06-28T20:58:02Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.